

2

CHIN GROUPED COUNTRY RESIDENTIAL AREA STRUCTURE PLAN

APRIL 2024

CHIN GROUPED COUNTRY RESIDENTIAL AREA STRUCTURE PLAN

April 2024

Prepared for Mr. Peter Klassen Chin, Alberta

Prepared by
Douglas J. Bergen & Associates Ltd.
HV Consulting Ltd.
Osprey Engineering Ltd.
BDT Engineering Ltd.
ISL Engineering
Mike Spencer Geometrics Ltd.
Martin Geomatic Consultants Ltd.

Table of Contents

1.	<u>INTROI</u>	INTRODUCTION				
	1.1	PURPO	1			
	1.2	LOCAT	1			
	1.3	APPRO	5			
	1.4	LEGISL	EGISLATIVE FRAMEWORK			
		1.4.1	The Municipal Government Act	6		
		1.4.2	The Municipal Development Plan	6		
		1.4.3	Subdivision Regulations	6		
		1.4.4	Land Use Bylaw	6		
	1.5 JU	JSTIFICATIO	ON	7		
2.	GOALS			9		
	2.1 G	OALS		9		
3.	PLAN A	<u>IREA</u>		10		
	3.1	SITE AN	SITE ANALYSIS			
		3.1.1	Site Location	10		
		3.1.2	Existing Land Use	10		
		3.1.3	Topography and Site Characteristics	10		
		3.1.4	Environmental, Historical, and Archaeological Significance	10		
		3.1.5	Opportunities and Constraints	13		
			3.1.5.1 Opportunities	13		
			3.1.5.2 Constraints	13		
4.	PROPOSED LAND AND DEVELOPMENT CONCEPT					
	4.1	DEVELO	15			
	4.2	CROW	15			
	4.3	DEVELO	15			
	4.4	BUILDI	19			
	4.5	ENVIRO	19			
	4.6	DESIGN	19			
	4.7	PHASIN	20			

5.	PROPOSED INFRASTRUCTUR	₹E

	5.1	5.1 TRANSPORTATION			
		5.1.1	Traffic Generation	21	
		5.1.2	School Bus Routes	21	
		5.1.3	Parking	21	
		5.1.4	Range Road 19-0	21	
	5.2	MUNI	CIPAL SERVICING	23	
		5.2.1	Potable Water Supply	23	
		5.2.2	Domestic Wastewater	23	
		5.2.3	Storm Water Drainage	25	
		5.2.4	Sewage Treatment and Dispersal	27	
	5.3	PUBLI	C UTILITIES	27	
		5.3.1	Electricity	27	
		5.3.2	Natural Gas	29	
		5.3.3	Telecommunication	29	
		5.3.4	Right of Way	29	
	5.4	PROTE	ECTIVE SERVICES	31	
		5.4.1	Fire	31	
		5.4.2	Police	31	
		5.4.3	Ambulance	31	
	5.5	OTHER	R SERVICES	31	
		5.5.1	Solid Waste	31	
		5.5.2	Mail Service	31	
6.	ARCHITE	CTURAL	CONTROLS	32	
7.	IMPLEMENTATION & DEVELOPMENT CONTROL		ON & DEVELOPMENT CONTROL	32	
8.	ADJACEN	IT LAND	OWNER CONSULTATION & OTHER CORRESPONDENCE	33	
9.	MARKET DEMAND		<u>ID</u>	33	
10.	CONCLU	SION		34	
	APPEND	IX A	Geotechnical Investigation		
	APPEND	IX B	Trip Generation Letters		
	APPEND	IX C	Osprey Engineering Septic Report		
	APPEND	IX D	Martin Geomatic Consultants Ltd. Stormwater Management Plan		
	APPEND	IX E	Property Ownership		

APPENDIX F Stormwater Drainage Concept

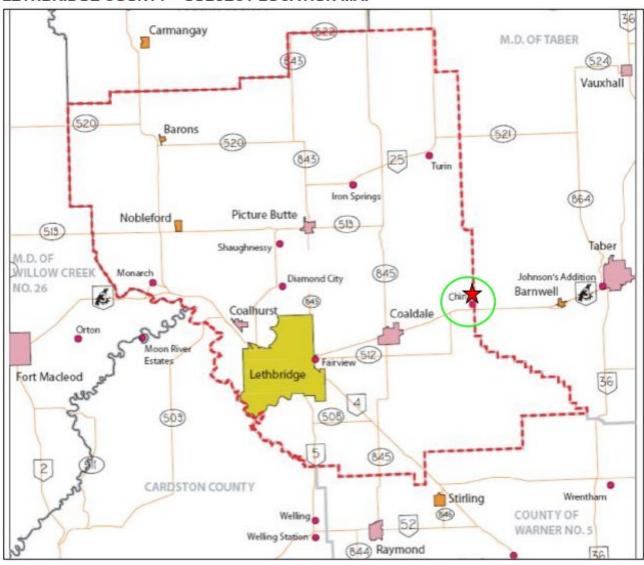
1. INTRODUCTION

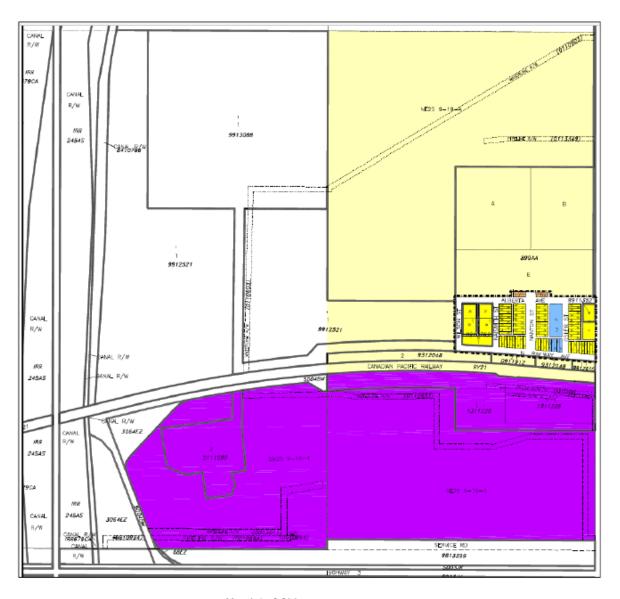
1.1. PURPOSE OF THE PLAN

The purpose of the Chin Meadows Area Structure Plan (ASP) is to set out a concept for planning and proposed guidelines for the future subdivision and development of the lands described in this document. The plan has been prepared to compliment the proposed amendment to the Lethbridge County Land Use Bylaw No. 1404 to change the zoning of the subject lands from Rural Urban Fringe (RUF) to Grouped Country Residential (GCR) and Rural General Industrial (RGI).

1.2 LOCATION AND BACKGROUND

(an excerpt from the Lethbridge County – Hamlet of Chin Growth Study, June 2020; prepared by Lethbridge County and Oldman River Regional Services Commission)


The subject property is located immediately north of the Hamlet of Chin. It is legally described as Blocks A, B & E on Plan 899AA. See **Figure 1.0 County Map and Figure 2.0 Land Use Districts**.


The Hamlet of Chin is located approximately 17 miles (27 km) east of the City of Lethbridge, ½ mile (0.8 km) north of Highway 3, situated between the Towns of Coaldale and Taber. Chin is located on the very eastern border of Lethbridge County with the Municipal District of Taber western boundary beginning immediately east of the hamlet. Chin currently encompasses approximately 19.7 acres (7.0 ha) of land within its designated boundary. The hamlet basically functions as a small urban residential area for the surrounding agricultural area. Chin is also located adjacent to the McCain Foods Ltd. potato processing plant, which is one of the larger industrial processing developments in Lethbridge County.

Chin was initially founded as a settlement area in the early 1900s due to both agriculture and the Canadian Pacific Railway (CPR) line being established in close proximity. The name Chin was derived from the native Blackfoot language of the Blackfoot First Nations who historically held a significant presence in southern Alberta. The CPR and the Alberta Railway and Irrigation Company registered the original subdivision site plan in 1910 (Plan 899AA) for lands north of the rail line. The CPR appeared to have grand expectations for the community to grow, as the original plan covered an area twice as large as what exists today. The north half of the original Chin subdivision plan was never developed for hamlet use, and in 1964 was consolidated into one larger block (Block E) and amalgamated with adjacent Blocks A and B into a single title. Figure 3.0 illustrates the current hamlet layout and lot/block configuration in respect of the 1964 consolidated plan.

LETHBRIDGE COUNTY - SUBJECT LOCATION MAP

Hamlet of Chin

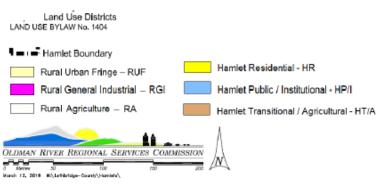


Figure 2.0 – Land Use Districts

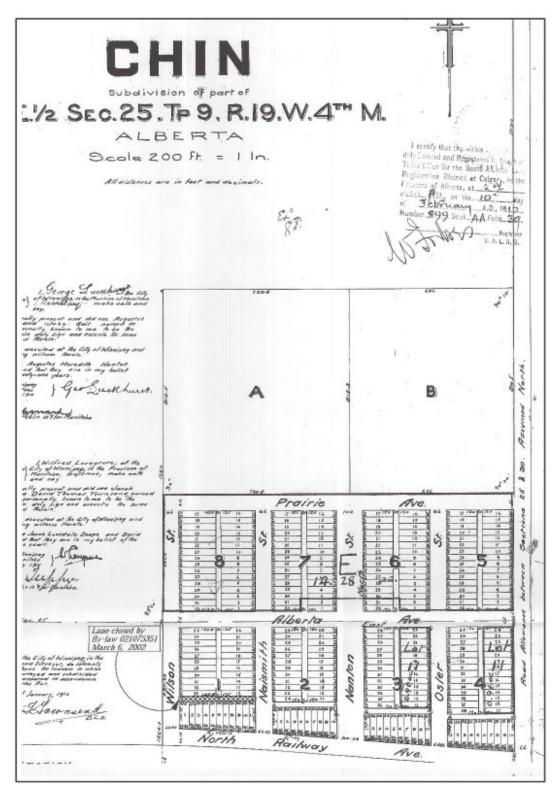


Figure 3.0 – Original Subdivision Plan for Chin

Chin never grew as originally anticipated and today it basically provides for a rural lifestyle within a small urban community setting. After a slight reduction in population size that occurred during the mid-century, the hamlet has experienced significant population growth over the last two decades. Population increases have included three census periods of 20% growth or higher, including one of 52.1% between 1996 and 2001. It is noted that these growth percentages appear high as the population itself is quite small at approximately 62 people. Chin remains a viable rural residential living option, especially as Taber and Coaldale continue to experience significant growth in the region.

Today, the hamlet is situated in close proximity to several large industrial operations, such as McCain Foods Ltd. and an anaerobic digester facility located adjacent in the MD of Taber, which help provide economic viability to the Chin area. This opportunity is recognized by the current land owner and therefore the preparation of this Area Structure Plan.

1.3 APPROVAL PROCESS

This Area Structure Plan will be submitted to the Lethbridge County in support of an application to amend the Lethbridge County Land Use Bylaw. An application will be submitted for a land use amendment from Rural Urban Fringe (RUF) to Grouped Country Residential (GCR) and Business Light Industrial (BLI). The Area Structure Plan application will be circulated in accordance with the Lethbridge County policies seeking comment from the appropriate authorities including:

- 1. The Oldman River Regional Services Commission
- 2. St. Mary's Irrigation District
- 3. Alberta Environment and Parks
- 4. Alberta Agriculture Food and Rural Development
- 5. The Chinook Regional Health Authority
- 6. Municipal District of Taber

Lethbridge County council will evaluate the comments received from the above mentioned authorities prior to rendering a decision on the application for re-designation. If the Area Structure Plan and rezoning applications are approved, the applicant will have a framework from which to make application for the subdivision of the various lots. A Development Agreement will be entered into between the Lethbridge County and the applicant to ensure orderly and quality infrastructure as directed by the agreement.

1.4 LEGISLATIVE FRAMEWORK

1.4.1 The Municipal Government Act

The Municipal Government Act (MGA) is the provincial legislation which regulates municipal land use planning. This legislation sets out the requirements for two documents which this proposal is subject to: The Lethbridge County Municipal Development Plan and the Land Use Bylaw.

1.4.2 The Municipal Development Plan

The Lethbridge County Municipal Development Plan (MDP) documents broad policies relative to development and growth within the County. This planning document pays particular attention to the desire of the County to maintain a strong agricultural base.

The subject property is of a size and scale that does not allow for a viable farming operation and therefore is suitable for consideration of reclassification and further subdivision. This Area Structure Plan is intended to provide the information required by the MDP to enable council to make an informed decision on the application.

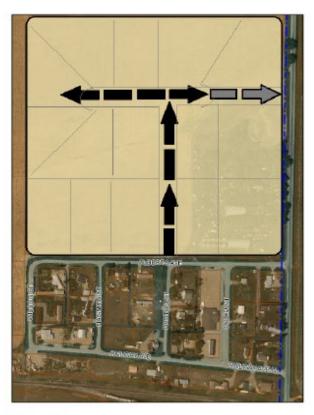
1.4.3 Subdivision Regulations

The MGA outlines the requirements for the creation of new parcels of land in the County. The application for subdivision of the new lots as laid out in this Area Structure Plan will be submitted to the Oldman River Regional Services Commission (ORRSC) for processing.

1.4.4 Land Use Bylaw

The Lethbridge County Land Use Bylaw No. 1404 recognizes the area of the proposed development as Rural Urban Fringe (RUF). The purpose of this classification is by in large to protect land for agricultural purposes and prevent fragmentation of parcels that may be considered in future annexations of the Hamlet of Chin. The proposed redesignation of the subject land is intended to be Grouped Country Residential (GCR) for the 12 new residential lots as well as the existing residential parcel. The existing tire shop site would also be considered for reclassification to Business Light Industrial (BLI). See **Figure 8.0 – Subdivision Layout**.

1.5 JUSTIFICATION


The Hamlet of Chin Growth Study approved by a Resolution of County Council in June of 2020 makes way for the further subdivision of Blocks A, B & E. The overall parcel does not have St. Mary's River Irrigation District irrigation rights and is of an odd shape. Small irregular parcels without irrigation rights are greatly compromised as viable farming operations.

Part 7 Paragraph 3 of the Chin Growth Study recognizes that "future hamlet growth should be directed to land to the north (Blocks A, B and E, Plan 899AA)." See **Figure 4.0 for Recommended Growth Direction**.

This diminished value as agricultural land gives way to a higher and better use of the property as a residential development. Small acreage parcels are a viable option for consideration. This proposed use is prevalent in fringe areas of many County communities with the Hamlet of Chin being no exception. There is increased benefit to the County should this proposal be approved given the land value would increase making way for a greater tax base.

The owner believes that the proposal outlined in this ASP is in keeping with the Municipal Development Plan as well as the Hamlet of Chin Growth Study and therefore offers support for further subdivision.

Map 4A Map 4B

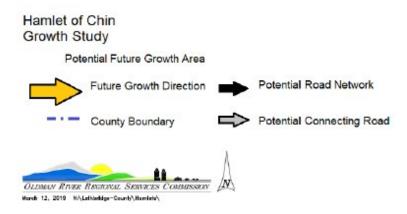


Figure 4.0 – Recommended Growth Direction

2. GOALS

2.1 GOALS

The principal goals of the Chin Meadows Area Structure Plan are:

- 1. To provide the information required to support the further subdivision of the land;
- 2. To establish a framework for the future development of the subject parcels;
- 3. To set out the access, servicing, and development standards that must be met in the development of the lands.

3. PLAN AREA

3.1 SITE ANALYSIS

3.1.1 Site Location

The parcels of subject land are located immediately north of The Hamlet of Chin in Lethbridge County. The proposed subdivided area is 'L' shaped with an existing homestead in the southeast corner. The 'L' shaped portion makes up some 32 acres of the original 41 acre parcel. See **Figure 5.0 – Aerial Photo**.

3.1.2 Existing Land Use

The property is currently farmed as dryland with a grain crop. The lack of irrigation rights prohibits strong consistent yields and therefore the subject 32 acres do not support a viable farming operation.

3.1.3 Topography and Site Characteristics

The property is virtually flat with minimal slopes from the north and south boundary to the centre of the property. The high point along the northern property line is at elevation 847.95 sloping to a low point of 846.84 near the centre. The high point along the southern boundary is at elevation 847.71. The natural low point runs east to west at the midpoint of the parcel. See **Figure 6.0 - Spencer Geometrics Topographical Survey**.

The proposed area to be subdivided is void of any vegetation or site features. The existing farmstead is bounded by a mature shelter belt with several buildings including a residence and shop.

The soils are generally comprised of a 100 mm layer of topsoil on top of low plastic clay and clay till. A geotechnical study was conducted on the site by BDT Engineering Ltd. to evaluate the property for its suitability for residential development and the building of roads. The results of the study support the proposed country residential development. The engineering document is available in **Appendix A – Geotechnical Investigation**.

3.1.4 Environmental, Historical, and Archaeological Significance

The County provided the applicant with a copy of the "Environmentally Significant Areas in the Oldman Region, County of Lethbridge" (February 1987) document. This study provides valuable information relative to this site.

Figure 5.0 – Aerial Photo

Figure 6.0 – Spencer Geometrics Topographical Survey

The figures contained in the study revealed that the subject property is outside of any of the noted sensitive areas. The site has historically been used for agriculture and is located away from the edge of the river valley which comprises the most archaeologically significant area. See **Figure 7.0 – Environmentally Significant Areas.**

3.1.5 Opportunities and Constraints

3.1.5.1 Opportunities

This property offers an excellent opportunity for rural residential living. It's proximity to Coaldale offers convenience for daily necessities as well as a short bus ride for children attending schools.

There is increasing demand for labour in the immediate area given the expansion of the McCain's food plant to the west as well as the expanded irrigation acres by St. Mary's River Irrigation District.

Vital utilities such as natural gas and electricity are readily available adjacent to the property which will facilitate servicing convenience.

3.1.5.2 Constraints

The site has limited agricultural viability given the irregular shape coupled with lack of irrigation access.

Access to Potable Water

The Hamlet of Chin does not have sanitary sewer infrastructure which limits the residential parcel size to a minimum of 2.0 acres for future development in order to accommodate a septic field/mound system.

Diagram sourced from Environmentally Significant Areas in the Oldman River Region, County of Lethbridge, February 1987; prepared by Cottonwood Consultants Ltd.

Figure 7.0 – Environmentally Significant Areas

4. PROPOSED LAND AND DEVELOPMENT CONCEPT

4.1 DEVELOPMENT CONCEPT

The concept for the proposed lot layout is illustrated in **Figure 8.0 - Subdivision Layout**. The development proposal consists of 13 lots. Lot number 1 will be occupied by the Southern Alberta Christian Learning Centre as per Development Permit # 2023-112 and will remain as currently zoned – Rural Urban Fringe (RUF). See **Figure 9.0 School Development Permit.**

The remainder of the proposed residential lots will be zoned Grouped Country Residential (GCR) as governed by the Lethbridge County Land Use Bylaw. A gravel surface road is proposed to connect Alberta Ave with Range Road 19-0. The existing tire shop site would also be rezoned from Rural Urban Fringe (RUF) to Business Light Industrial (BLI).

4.2 CROWN LOT CONSOLIDATION

The CPR and Alberta Railway and Irrigation Company registered four lots on the north side of Alberta Ave. with the legal descriptions:

Lot 1	Block 7	Plan 899AA
Lot 2	Block 7	Plan 899AA
Lot 31	Block 6	Plan 899AA
Lot 32	Block 6	Plan 899AA

The lots are currently owned by the Crown and front onto Nanton St. See **Figure 10.0 – Hamlet Plan with Existing Lot Layout**. In the event that this Area Structure Plan is adopted, steps will be taken to have these lots turned over to Lethbridge County and consolidate them with proposed lot #13 at the appropriate cost.

A partial road closure of Nanton St. as well as the adjacent lane ways will also need to be undertaken.

4.3 DEVELOPMENT AGREEMENT

As stipulated by the Land Use Bylaw, the Developer will enter into a Development Agreement with the Lethbridge County. The development agreement will outline specific conditions for development of the site. It is expected that these will include:



Figure 8.0 – Subdivision Layout

FORM B

LETHBRIDGE COUNTY DEVELOPMENT PERMIT

Pursuant to Land Use Bylaw No. 1404

Development Permit No: 2023-112

Applicant: Southern Alberta Christian Learning Centre, Box 1033, Coaldale, Alberta, T1M 1M8

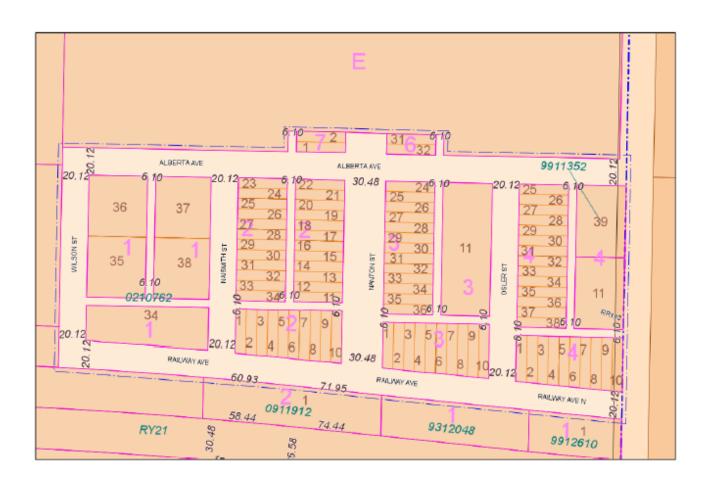
In respect of works consisting of: Public / Institutional (School - 4,000 sq. ft.) with Accessory Structure (Playground – 14,400 sq. ft.)

On land located at: Plan 899AA Block A (94048 RR 190) and as described on plans submitted by the applicant.

This permit refers only to works outlined in Development Application No. <u>2023-112</u> and is <u>subject to the</u> <u>conditions contained herein</u>:

- · The School and Playground shall be located as per the submitted site plan.
- The applicant shall enter into a Dust Control Agreement to apply Dust Control to Alberta Avenue on an annual basis.
- The area surrounding the playground shall be fenced, to the satisfaction of the Development Authority, to
 ensure that users do not present a hazard to traffic.
- Any signage on this parcel shall require a new Development Permit.
- Approval of all Building Permits (includes Plumbing, Electrical, Gas permits, and Private Sewage Disposal Systems) must be obtained <u>prior</u> to commencement. Building Permits are obtained through **Park** Enterprises, #10, 491 W.T. Hill Blvd. South, Lethbridge. Phone - (403) 329-3747.
- Any planned work in the County right-of-way (driveway, approaches, etc.) requires separate approval from the County Director of Public Operations (call 403-328-5525).

INFORMATIVE: Alberta Transportation and Economic Corridors has provided comment on this development, stating that a Roadside Development Permit is required for this development. See attached correspondence for details.


Date of Decision: July 25, 2023

Appeal Period Expiry Date: August 15, 2023

The above-mentioned permit is subject to an appeal period. Any person affected by a decision regarding a Development Permit may file an appeal with the Development Appeal Board within twenty-one (21) days of the date of decision (section 686 of the Municipal Government Act).

Figure 9.0 – School Development Permit

Hamlet of Chin Growth Study

Remnant Hamlet Plan with Existing Lot Layout



Diagram sourced from Lethbridge County - Hamlet of Chin Growth Study, June 2020; prepared by Lethbridge County and Oldman River Regional Services Commission

Figure 10.0 – Hamlet Plan with Existing Lot Layout

- Standards and requirements for municipal infrastructure that will be constructed by the Developer and turned over to the County.
- Any other improvements deemed necessary to support the development.
- Timelines for completion of Developer-led improvements.

4.4 BUILDING SETBACKS

The useable building envelope within each lot will depend on the setbacks imposed by the County Land Use Bylaw and are summarized in the following table:

Criteria	County Land Use Bylaw
Building setback from centreline of a rural road	38.1 m (125 ft)
Front yard setback	15.2 m (50 ft)
Rear yard setback	6.1 m (20 ft)

Where Range Road 19-0 is considered a rural road, the building setbacks imposed by Schedule 6 of the Land Use Bylaw will govern the adjacent boundary of the proposed lots. The proposed front yard setback of the lots will be 15.2 m (50 ft). See Figure 8.0 – Subdivision Layout.

Shallow utility easements will be registered against the property to protect these installations. No building development will occur on these easements.

4.5 MUNICIPAL RESERVES

Municipal reserve will be owing on the parcel as cash in lieu of land.

4.6 DESIGN POPULATION AND DENSITY

For the purpose of this Area Structure Plan, the development population has been estimated using an assumed population of 3 persons per household (pph) and a total of 14 new residential lots. Therefore, the ultimate population for the development is:

The overall population density is calculated by:

42 persons/11.33 = 3.7 persons per ha

The school will be occupied by some 70 students and 6 teachers from 8:30 am – 4:30 pm, Monday to Friday. Students will arrive and depart via school bus. Staff will travel to and from school by car.

4.7 PHASING

This development will be serviced and built out as one single phase. All improvements will be constructed and installed in a timely fashion as per the terms in the development agreement, should approval for this ASP be granted.

5. PROPOSED INFRASTRUCTURE

5.1 TRANSPORTATION

The developer is proposing that all 13 lots be serviced via a new gravel surface road with access off of RR 19-0 from the east and Alberta Ave from the south. New approaches for the access road will be constructed to meet Lethbridge County criteria. Culverts will be sized to meet County standards to ensure proper drainage along each side of the road. See **Figure 11.0 – Road Design.**

5.1.1 Traffic Generation

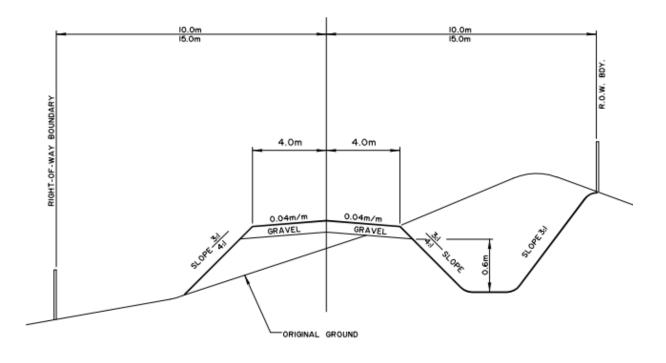
ISL Engineering has provided a Traffic Memo which reports that traffic generated from this proposed development will not negatively impact the existing infrastructure and further that current roads have the capacity for the additional traffic. See Appendix B – Trip Generation Letters for both 19-0 and Highway 3 corridor.

5.1.2 School Bus Routes

Access for school buses is provided by Alberta Ave and Range Road 19-0 which is located in the Municipal District of Taber.

5.1.3 Parking

It is assumed that all parking requirements will be satisfied on the individual lots.


5.1.4 Range Road 19-0

The Municipal District of Taber was invited to make comment on this proposed development since it is adjacent to their boundary and Range Road 19-0 is in the Municipal District of Taber. On February 5th, 2024, the MD of Taber Development Authority made the following.

RESOLUTION #: 2024-0-036

That the Subdivision and Development Authority authorizes Administration to respond to the Lethbridge County advising Lethbridge County ensure the following are addressed within the proposed Area Structure Plan: Chin Grouped Country Residential:

- No additional approaches will be permitted off of Rge Rd 19-0
- Require a minimum 15m radius on all intersecting roads to Rge Rd 19-0

SURFACE WIDTH (m)	R.O.W. REQUIRED (m)	NORMAL SIDE SLOPE	MAXIMUM SIDE SLOPE	NORMAL BACK SLOPE	MAXIMUM BACK SLOPE	MINIMUM CURVE RADIUS (m)	MAXIMUM SUPER ELEVATION (m/m)	MAXIMUM GRADIENT (%)
8.0	20.0 - 30.0	4:1	3:1	3:1	3:1	300	0.08	7.0

NOTES:

 IF ADDITIONAL RIGHT-OF-WAY IS REQUIRED, TRY TO OBTAIN BY BACKSLOPING AGREEMENT, OTHERWISE PURCHASE.

GRAVEL ROAD STANDARD CROSS—SECTION WITHIN A SUBDIVISION DEVELOPMENT

SCALE:	N.T.S
DATE: SEPTE	MBER 2019
STD. DWG NO.	G-114
APPROVED BY: DIRECTOR SERVICES	OF MUNICIPAL

Diagram sourced from Lethbridge County – Engineering Guidelines & Minimum Servicing Standards, September 2019; prepared by WSP

Figure 11.0 Road Design

Access to all of the proposed lots will be provided via the proposed new Naismith Street which eliminates any need for additional access points into Range Rd 19-0. The intersection of Naismith Street and RR 19-0 will have 15.0m radius surface. This Area Structure Plan therefore supports the comments from the MD of Taber.

5.2 MUNICIPAL SERVICING

5.2.1 Potable Water Supply

It is envisioned that domestic potable water will be supplied to the lots in one or a combination of the following 3 alternatives:

- 1. Cisterns could be installed below grade or within the basement of the homes as a vessel to store water.

 Potable water would be delivered by truck.
- 2. The Hamlet of Chin is serviced by the County of Lethbridge Rural Water Association. The association has acknowledged that the system is currently at capacity and that no further units are available in the foreseeable future. See Figure 11.a County of Lethbridge Rural Water Association letter. The developer is providing a 10.0m (32'-10") utility right of way at the front of each lot to allow for future installation of a potable water pipeline should capacity become available.

It should be noted that all of the proposed lots are conditionally sold to buyers who are in agreement with cisterns as the method of providing potable water.

5.2.2 Domestic Wastewater

Domestic wastewater will be managed by means of individual on-site wastewater treatment systems for each lot. The geotechnical investigation completed by BDT Engineering Ltd. (attached as **Appendix A – Geotechnical Investigation**) and the report by Osprey Engineering Ltd. (**See Appendix C – Osprey's Septic Report**) confirms the feasibility of individual on-site wastewater treatment systems and provides general recommendations for their design and construction. Lot purchasers will be responsible for the installation of on-site wastewater treatment systems in accordance with the Alberta Private Sewage Systems Standard of Practice (2021).

RE: County of Lethbridge Rural Water Association Availability of Units in Chin

Sid Bilcik via colrwa.onmicrosoft.com

Thu, Dec 7, 11:55 AM (13 days ago)

to Douglas

Hi Doug,

As to our conversation, the County of Lethbridge Rural Water Association currently does not have any water units available anywhere in our system.

I can not speculate if there will be any units available or upgrades in the future.

Sid Bilcik

Manager County of Lethbridge Water Association 403-380-9791

5.2.3 Storm Water Drainage

The proposed development area is virtually flat which presents considerable challenges in terms of drainage. Storm water naturally flows into the parcel from the north and then migrates west via a natural low area near the centre of the site. This low point has very little grade which causes the storm water to naturally pond in this location.

The lack of natural grading on the site led to a solution of two storm ponds since water naturally collects in the centre of the site. The ponds are designed to store a 1:100 year storm event and equipped with a pump system to drain the ponds after the storm event subsides. See **Figure 12.0 and Appendix F – Stormwater Drainage Concept.**

Storm water will drain through the site via grassed swales and a below grade pipe joining the ponds. These swales, along with the storm ponds, will be registered as easements and Public Utility lots respectively in favor of the County. Pumped storm water will migrate westerly via natural drainage channels as per pre-development conditions and eventually drain into the Chin Reservoir. See **Appendix D – Martin Geomatic Consultants Ltd. Stormwater Management Plan.**

There was no groundwater detected by the Geotechnical investigation which included five boreholes drilled to a depth of 5.0 metres. (see **Appendix A – Geotechnical Investigation**) Excavation and soils logs performed by Osprey Engineering do not indicate continued or frequent saturation of the natural depression areas. The proposed development greatly reduces the volume of storm water egressing the site given that it is stored and then released gradually.

Buildings adjacent to the existing and proposed drainage swale should be constructed with main floor and entrances above the 100-year maximum depth of ponding (elevation of 847.00m). The storm water plan will be formalized with the detailed engineering should this ASP be adopted.

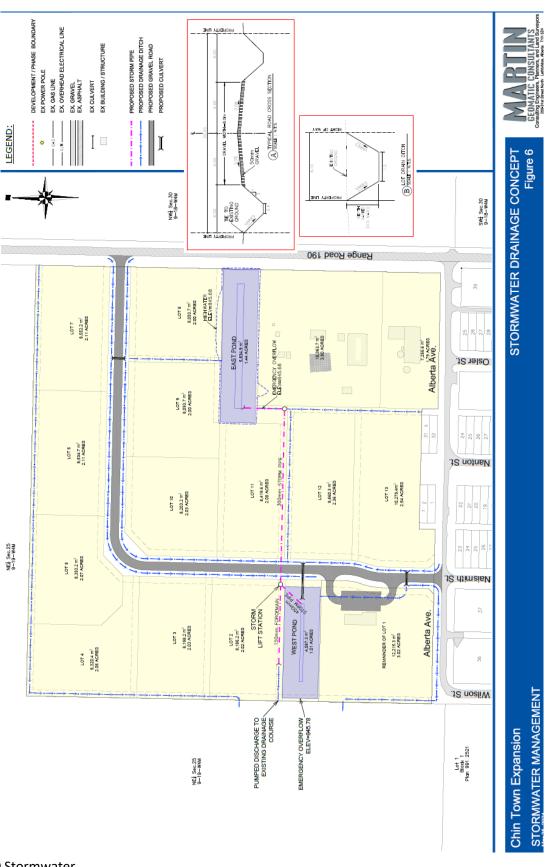


Figure 12.0 Stormwater Drainage Concept

5.2.4 Sewage Treatment and Dispersal

A Private Sewage Treatment Systems (PSTS) will be installed on each lot. Sizing of the system will be determined by the number of occupants in the residence as it relates to the Alberta Private Sewage Systems Standard of Practice (Safety Codes Council 2021).

Osprey Engineering Inc. was retained to evaluate each site relative to its suitability for a PSTS. BDT Engineering's soils report was relied on and supplemented by onsite excavations for this evaluation. See **Appendix C – Osprey's Septic Report**.

5.3 PUBLIC UTILITIES

5.3.1 Electricity

Existing one-wire, single phase overhead power lines operated by Fortis Alberta are present along the east side of Range Road 19-0. Fortis has confirmed that their infrastructure is adequate to support the proposed development and that they are receptive to the development proposal. Service would be provided to each lot by means of underground infrastructure and pad mounted transformers. See **Figure 13.0 - Existing FORTIS Facilities**.

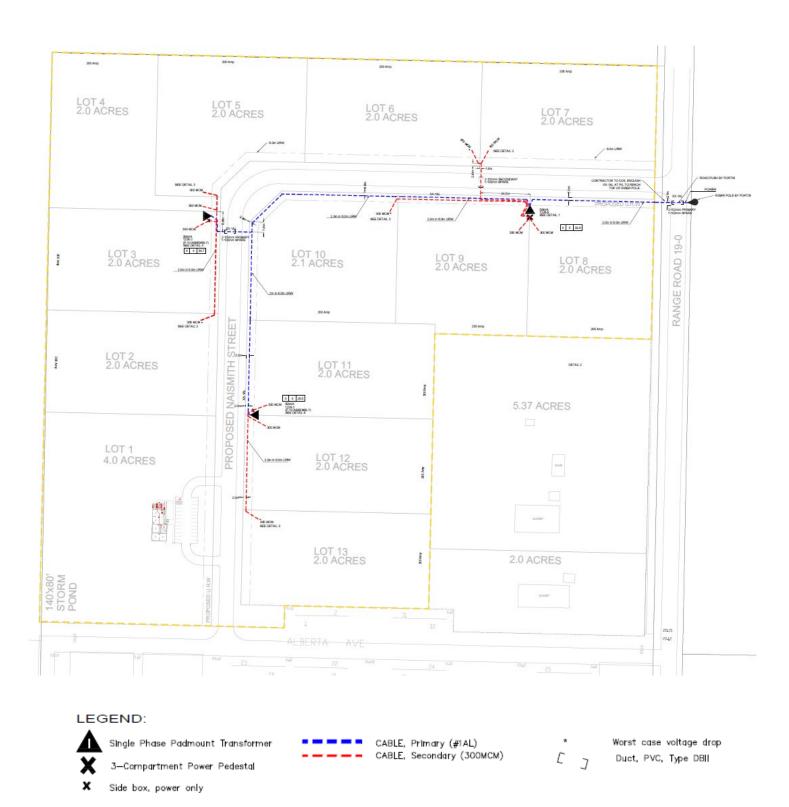


Figure 13.0 – Existing FORTIS Facilities

5.3.2 Natural Gas

ATCO Gas has advised that there is an existing distribution line along the east side of Range Road 19-0. See **Figure 14.0 – ATCO Infrastructure**. Preliminary discussions with ATCO have suggested that their infrastructure can support the development. Details regarding the extension of natural gas distribution infrastructure will be confirmed following approval of the Area Structure Plan.

5.3.3 Telecommunication

Telus has advised that they have existing infrastructure along Range Road 19-0. Preliminary discussions with Telus have suggested that their existing facilities can support the proposed development. Details for extension of their infrastructure will be confirmed following approval of the Area Structure Plan.

Shaw Cable has advised that they do not have existing infrastructure in the area immediately surrounding the site. Shaw has provided a preliminary estimate of the cost to extend their infrastructure to the site which is prohibitive. Shaw cable will therefore not be provided to the development.

Wireless communications services are also available in the area.

5.3.4 Right of Way

A 6.0m (20.0ft) right of way will be registered parallel to the front property line to accommodate shallow utilities. This right of way will provide ample room should a domestic water pipeline be considered at a future date.

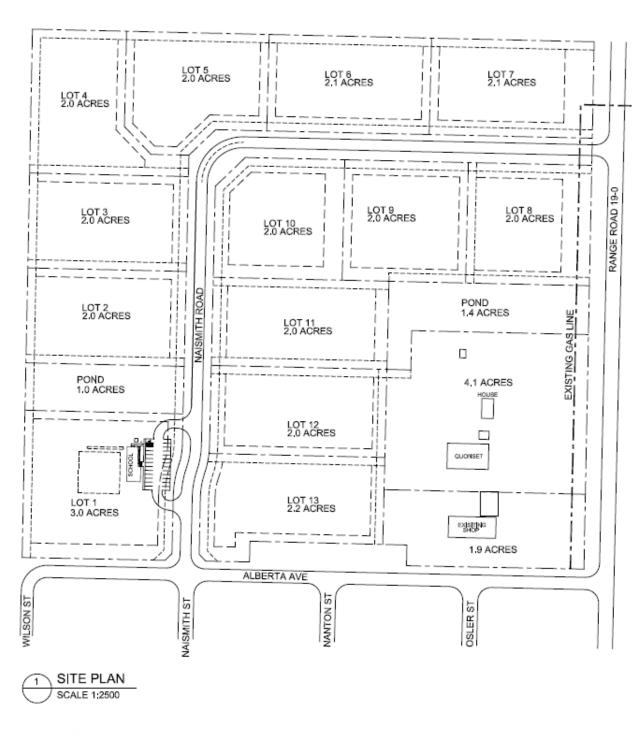


Figure 14.0 – ATCO Infrastructure

5.4 PROTECTIVE SERVICES

5.4.1 Fire

Response to fire emergencies would be dispatched by the City of Lethbridge Emergency Dispatch Centre through the 911 system. The site is located within the Coaldale Rural Emergency Service Zone (ESZ) of the County and therefore the Coaldale Fire Department will respond to emergency calls.

5.4.2 Police

Police service in the area of the development is provided by the Royal Canadian Mounted Police (RCMP) from the Coaldale Detachment. Response to emergencies would be dispatched through the 911 system.

5.4.3 Ambulance

Emergency medical transport services in the area of the development are operated by Alberta Health services and would be dispatched through the 911 system. Ambulance services base stations are located in the City of Lethbridge, Town of Picture Butte and Town of Coaldale.

5.5 OTHER SERVICES

5.5.1 Solid Waste

Lot owners will be responsible for solid waste collection. The Lethbridge County operates a solid waste transfer station located in Coaldale. Lot owners also have the option to transport waste to the Lethbridge Regional Landfill. Alternatively, lot owners may contract with a private waste collection company for solid waste removal and disposal.

5.5.2 Mail Service

Application will be made to Canada Post for postal service to the new lots following approval of the Area Structure Plan.

6. ARCHITECTURAL CONTROLS

The proposed development will form a northerly exterior of the Hamlet of Chin as described in the Lethbridge County Hamlet of Chin Growth Study of June 2020, prepared by Lethbridge County and Oldman River Regional Services Commission.

It is therefore desirable that the architectural fabric of the proposed development be in keeping with that of existing conditions. The Hamlet of Chin is not subject to any Architectural Controls and therefore there are none proposed for this development.

7. IMPLEMENTATION AND DEVELOPMENT CONTROL

- This Area Structure Plan will become a Lethbridge County bylaw should it be adopted. Amendment to the Land
 Use Bylaw will follow accordingly.
- One the Area Structure Plan is adopted, a subdivision application in keeping with the Area Structure Plan will be filed with Lethbridge County.
- Landowners will be responsible to acquire all permits required to further develop their lot including: Development Permit, Building Permit, Private Sewage Permit along with other utility permits required by the province.

8. ADJACENT LANDOWNER CONSULATION AND OTHER CORRESPONDENCE

Notices were hand delivered to all residents of the Hamlet of Chin as well as other adjacent landowners inviting them to an open house held on December 19th, 2023. The open house ran from 5:00pm to 7:00 pm at the Peace Valley Church.

Neighbouring landowners were generally in favor with the proposed development.

9. MARKET DEMAND

The developer has received very favorable response to the marketing of the lots. All proposed lots have been conditionally sold subject to approvals.

10. CONCLUSION

This Area Structure Plan has been prepared and submitted to support the proposal of creating 13 Grouped Country Residential parcels and a school site north of the Hamlet of Chin for consideration by the Lethbridge County Council by way of an application for amendment of the Lethbridge County Land Use Bylaw. The proposed amendment would be supported by the formal adoption of this ASP by County Council. The proponents believe this proposal establishes the highest and best use of the property as 12 residential lots and one school site since a productive farming operation is not viable on the property.

This document has been drafted and assembled in consultation with local authorities as well as experts in the area of civil and geotechnical engineering. The ASP outlines the result of considerable consultation with the many stakeholders and we trust provides Lethbridge County with the information required to consider a request for reclassification of the lands.

APPENDIX A

Geotechnical Investigation

GEOTECHNICAL EVALUATION CHIN MEADOWS CHIN, ALBERTA

Prepared for: Douglas J. Bergen & Associates Ltd. 2023-139
August, 2023

1 CONTENTS

1.0	I	NTRODUCTION	2
2.0	F	PROJECT DETAILS AND SCOPE OF WORK	2
3.0	C	GEOTECHNICAL FIELD AND LABORATORY WORK	2
4.0	S	SITE AND SUBSURFACE CONDITIONS	3
4	1.1	Site Conditions	3
4	1.2	Soil conditions	3
4	1.2.1	Topsoil	3
4	.2.2	Clay	3
4	.2.3	Clay Till	3
4	1.3	Groundwater Conditions	4
5.0	(GEOTECHNICAL RECOMMENDATIONS	4
5	5.1	General	4
5	5.2	Site Preparation	5
5	5.3	Site Grading	5
5	5.4	Construction Excavations	6
5	5.5	Trench Excavation and Backfill	6
5	5.6	Subgrade Preparation	7
5	5.7	Roadway Design Recommendations	7
5	5.8	Cement Type	7
5	5.9	Limit States Design	7
5	5.10	Shallow Foundations	8
5	5.11	Floor Slabs-on-grade	8
5	5.12	Below Grade Walls	9
5	5.13	Frost Protection	10
5	5.14	Septic Fields	10
5	5.15	Seismic Design	10
6.0		DESIGN AND CONSTRUCTION GUIDELINES	11
7.0	(CLOSURE	12

1.0 INTRODUCTION

This report presents the results of a geotechnical evaluation conducted by BDT Engineering Ltd. (BDT) for the proposed residential lands located east of Range Road 19-0 and north of Chin, AB.

The scope of work for this evaluation was outlined in a discussion and email with Douglas Bergen. The objective of this evaluation was to determine the general subsurface conditions in the area of the proposed development and provide recommendations for the geotechnical aspects of design and construction.

Authorization to proceed with this work was received from Mr. Bergen on August 10, 2023.

2.0 PROJECT DETAILS AND SCOPE OF WORK

Based on the information provided, the proposed development will consist of approximately 13 lots between about 2.0 acres to 4.1 acres. An internal access roadway is also envisioned.

The scope of work for this evaluation included drilling five (5) boreholes, a laboratory program to assist in classifying subsurface soils and a report providing the following design and construction recommendations:

- Design parameters for shallow foundations.
- Recommendations for Backfill materials and compaction.
- Design and construction provisions for control of groundwater and mitigation, if required.
- Concrete type for structural elements in contact with soils.
- Trench excavation recommendations as well as backfill materials, compaction and moisture content requirements.
- Recommendations for Seismic design

3.0 GEOTECHNICAL FIELD AND LABORATORY WORK

The fieldwork for this evaluation was carried out on August 21, 2023, using a truck mounted solid stem auger drill rig contracted from Chilako Drilling Services Ltd. of Coaldale, Alberta. The drill rig was equipped with 150 mm diameter solid stem continuous flight augers. The borehole locations are presented on Figure 1 in Appendix A.

Five boreholes, (BH001 to BH005), were drilled at locations across the development area.

Disturbed grab samples were obtained from each borehole at 0.75 m intervals. All soil samples were visually classified in the field, and the individual soil strata and the interface between them were noted. The borehole logs are presented in Appendix B. An explanation of the terms and symbols used on the borehole logs is also included in Appendix B.

A slotted 25 mm diameter PVC standpipe was installed in each of the boreholes to monitor groundwater levels. Auger cuttings were used to backfill around the standpipes and the boreholes were sealed at the surface with approximately 600 mm of bentonite chips.

Classification tests including natural moisture content, Atterberg Limits were subsequently performed on the collected borehole samples at BDT's Lethbridge Laboratory to aid in the determination of engineering properties. Laboratory results are noted on the borehole logs in Appendix B.

4.0 SITE AND SUBSURFACE CONDITIONS

4.1 SITE CONDITIONS

The site is located west of Range Road 19-0 and north of Chin, AB. At the time of the field drilling the lands were agricultural in nature. The site generally slopes to the south and west.

4.2 SOIL CONDITIONS

It should be noted that geological conditions are innately variable. At the time of preparation of this report, information on subsurface stratigraphy was available only at discreet borehole locations. In order to develop recommendations from this information, it is necessary to make some assumptions concerning conditions other than at the borehole locations. Adequate field reviews should be provided during construction to check that these assumptions are reasonable.

The general subsurface stratigraphy comprised surficial layer of topsoil, underlain by native clay and clay till in descending order. The following sections provide a summary of the soils encountered in the borehole logs. A more detailed description is provided on the borehole logs in Appendix B.

4.2.1 TOPSOIL

A layer of topsoil was encountered in all boreholes. The topsoil was consistently 100 mm thick across the site.

4.2.2 CLAY

Clay was encountered beneath the topsoil in all boreholes. The clay ranged in thickness from 600 mm to 800 mm. The clay was described as silty, sandy, firm to stiff, low plastic, damp and light brown. A gravelly sand layer about 300 mm thick was encountered in BH005 below the clay.

4.2.3 CLAY TILL

Clay till was encountered beneath the clay in all boreholes and present to the maximum depths drilled. The clay till was silty, sandy, with gravel. The clay till was firm to stiff, generally increasing slightly with depth, low to medium plastic, and damp to very moist. The clay till was olive brown. White precipitates, oxide stains and coal specks were noted in the clay till.

4.3 GROUNDWATER CONDITIONS

At the time of drilling, some sloughing and no seepage was encountered in the boreholes. The groundwater levels were measured on August 30, 2023. Table 4.3 summarizes the groundwater monitoring data.

Borehole Number	Depth of Standpipe below Ground Surface (m)	Depth to groundwater from ground surface (m)
BH001	4.42	Dry
BH002	5.03	Dry
BH003	4.27	Dry
BH004	5.03	Dry
BH005	3.96	Dry

Table 4.3 Groundwater Monitoring Data August 30, 2023

Groundwater is not expected to impact the proposed development. It is noted that groundwater levels will fluctuate seasonally in response to climatic conditions and may be at a different depth when construction commences. Groundwater levels should be monitored prior to development. The intent is to provide an early indication of dewatering requirements during excavations for underground utilities and foundations.

5.0 GEOTECHNICAL RECOMMENDATIONS

5.1 GENERAL

The recommendations that follow offer options intended to aid in the development of the area. The recommendations are provided on the understanding and condition that BDT will be retained to review the relevant aspects of the final design drawings and specifications and will be retained to conduct such field reviews as are necessary to ensure compliance with geotechnical aspects of the Building Code, this report, and final plans and specifications. BDT accepts no liability for any use of this report in the event that BDT is not retained to provide these review services.

Recommendations are provided for shallow footings, grade supported floor slabs, below grade construction, general site development and lot grading, trench excavation and backfill, backfill materials and compaction, roadway design considerations and concrete type.

Shallow footings are generally feasible for residential and light commercial/institutional buildings in all areas of the proposed development area. Further recommendations are provided in Section 5.10. However, because footings may be placed within areas of general engineered fill, quality assurance monitoring by geotechnical personnel is recommended during fill placement. It is noted that placement of foundations on engineering cohesive fill thicknesses greater than 1.5 m may require special consideration regarding long-term consolidation of the fill and subsequent performance issues with the foundations / floor slabs-on-grade.

Slabs-on-grade construction for the development area should consider the precautions recommended for slabs-on-grade, including the subgrade preparation measures intended to improve slab performance.

All foundation recommendations presented in this report are based on the assumption that an adequate level of monitoring will be provided during construction and that all construction will be carried out by suitably qualified contractors, experienced in foundation and earthworks construction. An adequate level of monitoring is considered to be:

- For earthworks, and underground utility construction, full-time monitoring and compaction testing.
- For shallow foundations and slabs, inspection of bearing surfaces prior to placement of concrete of mudslabs, and design review during construction.

All such monitoring should be carried out by suitably qualified persons, independent of the contractor. One of the purposes of providing an adequate level of monitoring is to check those recommendations, based on information collected at discrete borehole locations, are applicable to other areas of the site.

5.2 SITE PREPARATION

Subgrade preparation is required in all lots, where there will be grade changes, as well as all paved areas. This includes stripping of topsoil and deleterious fill materials, scarification, moisture conditioning, and compaction. The native clay and clay till soils are suitable for site grading purposes. The clay soils appear to be below the optimum moisture content (OMC) at shallower depths, and it is expected that moisture conditioning consisting of wetting and/or mixing will be required to reduce the swelling potential of this soil and to achieve the compaction standards recommended. Proof-rolling within roadways to detect soft areas is also recommended. The contractor should expect soil moisture variability across the site.

5.3 SITE GRADING

All lots, in the vicinity of the buildings, should be graded for drainage at a minimum of 2.0 %. The existing surficial site soils comprising clay and clay till are suitable for use as landscape fill materials or for use as general engineered fill materials for general grading. The moisture content of the site soils at surface generally appear to be slightly below their OMC and may require some wetting and/or mixing to achieve their anticipated OMC. General engineered fill materials for lot grading should be moisture conditions to within a range of -1 % to +2% of the OMC prior to compaction and compacted to a minimum of 98 % of SPD.

Further recommendations regarding backfill materials and compaction are in Appendix C.

5.4 CONSTRUCTION EXCAVATIONS

Excavations should be carried out in accordance with the Alberta Occupational Health and Safety (OH&S) Regulations. For this project, the depth for the majority of the excavations is assumed to be less than 3.0 m below existing ground surface. Excavations to deeper depths require special considerations. The following recommendations notwithstanding, the responsibility of trench and all excavation cutslopes resides with the Contractor and should take into consideration site-specific conditions concerning soil stratigraphy and groundwater. All excavations should be reviewed by a geotechnical engineer prior to personnel working within the base of the excavation.

Temporary excavations within stiff clay or clay till soils which are to be deeper than 1.5 m should have the sides shored and braced or the slopes should be cut back no steeper than 1.0 horizontal to 1.0 vertical (1H:1V)

Flatter sideslopes may be required in some areas where groundwater is encountered within sand layers, which may cause local sloughing and instability of the excavation sidewalls. In these instances, the excavation configuration design should be reviewed by experienced personnel, prior to allowing personnel to enter the base of the excavation. Vertical trench cuts using trench box wall support are not recommended for this project due to the inherent difficulty in compacting the backfill materials to an engineered standard, as well as the potential of cave-ins of the excavation sidewalls against the utility box.

Any encountered groundwater seepage should be directed towards sumps for removal. Conventional construction sump pumps should be capable of groundwater control.

Temporary surcharge loads, such as spill piles, should not be allowed within a distance equal to the depth of the excavation from an unsupported excavation face or 3.0m, whichever is greater, while mobile equipment should be kept back at least 3.0m. All excavation sideslopes should be checked regularly for signs of sloughing, especially after rainfall periods. Small earth falls from the sideslopes are a potential source of danger to workmen and must be guarded against.

General recommendations regarding construction excavations are included in Appendix C.

5.5 TRENCH EXCAVATION AND BACKFILL

The moisture content of the clay and clay till soils encountered across the site is generally below the anticipated optimum moisture content. It is expected that such soils will require slight wetting to achieve desired moisture content and proper compaction.

Trenches must be backfilled in such a way as to minimize the potential differential settlement and/or frost heave movements. A minimum density of 98% of Standard Proctor Density (SPD) is recommended for all trenches. Clay backfill should be uniformly moisture conditioned to between \pm 2% of optimum moisture content (OMC). The compacted thickness of each lift of backfill should not exceed 150 mm. In order to achieve this uniformity, the lift thickness and compaction criteria must be strictly enforced.

General recommendations for trench excavation and backfill are included in Appendix C.

5.6 SUBGRADE PREPARATION

For all roadways the upper 300 mm of clay or clay till soils should be scarified and uniformly moisture conditioned to between -1% of optimum and 2% over OMC. The subgrade should then be uniformly compacted to a minimum of 98% of SPD.

All deleterious and unsuitable materials, including any sand pockets, if encountered, should be excavated from under proposed fill areas during the reconstruction operations.

The clay, clay till soils encountered are acceptable for subgrade construction. Sand layers if encountered should be removed. Proof-rolling to detect soft areas once the subgrade preparation activities are completed is also recommended.

5.7 ROADWAY DESIGN RECOMMENDATIONS

The roadway design section for gravel 'Local' roadways, is recommended as follows:

Design Roadway Section										
Material Type	Gravel Surfaced									
Granular Base Course	200 mm									
Subgrade Preparation	300 mm									

The above recommended pavement layer thicknesses generally refer to average values and recognize typical construction variability. As such, constructed layer thicknesses should satisfy the thickness tolerances identified in the City of Lethbridge Engineering Standards for granular materials.

The roadway design should include provisions for subsurface drainage of the pavement granular layers. It is understood that the roadway cross section for this development contemplates a semi-rural cross section. Therefore, the granular layers should daylight to the ditches where possible.

5.8 CEMENT TYPE

Based on BDT's local experience with the local soils, as well as the laboratory testing conducted to determine soluble sulphate levels, the properties of concrete for foundations in contact with soil or groundwater shall meet the requirements of CSA A23.1-14 Class S-2 exposure and have a minimum specified 56-day compressive strength of 32 MPa.

For this exposure classification, alternatives include the usage of Type HS Portland cement or blends of cement and supplementary cementing materials conforming to Type HS and/or Type HSb cements.

5.9 LIMIT STATES DESIGN

The design parameters provided in the following sections may be used to calculate the ultimate foundation capacity in each case. For Limit States Design (LSD) methodology, in order to calculate the factored load capacity, the appropriate Soil Resistance Factors must be applied to each loading conditions as follows:

Factored Capacity = Ultimate Capacity X Soil Resistance Factors

In general, the following soil resistance factors in Table 5.9 must be incorporated into the foundation design. These factors are considered to be in accordance with the CFEM (2006).

Table 5.9 Soil Resistance Factors

Item	Soil Resistance Factor										
Shallow Foundations											
Bearing Resistance	0.5										
Passive Resistance	0.5										
Horizontal resistance (sliding)	0.8										

5.10 SHALLOW FOUNDATIONS

Shallow foundations, should be constructed a minimum of 1.4 m below the final design ground surface (frost protection requirements). Based on the soil stratigraphy and conditions on this site, it is recommended that shallow footings be founded on the clay or clay till.

The ultimate static bearing pressure for the design of strip and spread footings at these depths may be taken as 200 KPa for the clay or clay till. Factoring should be considered as noted in section 5.9. Footing dimensions should be in accordance with the minimum requirements of the Building Code.

Bearing certification by a geotechnical engineer is recommended to ensure that the shallow foundations are placed on competent native soils. If softer native soils are encountered at footing level, recommendations may be provided to lower the footing elevations to materials satisfying the design bearing capacity or to widen the footings within these areas. This should be a field determination at the time of bearing observation.

The anticipated foundation soils are of a low to medium plasticity, and therefore, are prone to volume changes (both heave and settlement) with varying moisture content. Exposed soils beneath building structures must be protected against changes in moisture content during construction to reduce the risk of heaving. A permanent weeping tile system is also recommended around the outside perimeter of any structure at the foundation elevation to maintain a consistent moisture profile of the foundation soils.

Settlement of footings designed and constructed in accordance with the above recommendations should be well within the normally tolerated values of 25 mm total and 15 mm differential at factored loading. If this range of settlement is not tolerable, then a pile foundation system may be considered for the building.

Further recommendations regarding shallow foundations are presented in Appendix C.

5.11 FLOOR SLABS-ON-GRADE

For construction of floor slabs-on-grade for buildings in the development area the subgrade should be scarified to a minimum depth of 300 mm, and moisture conditioned to within -1% to +2% of the OMC. The minimum compaction should be 98% of SPD. The prepared subgrade

should be proof-rolled and any soft or loose pockets detected should be reconditioned as recommended above or over-excavated and replaced with general engineered fill.

A levelling course of clean well-graded crushed gravel, at least 150 mm in compacted thickness, is recommended directly beneath the slabs-on-grade, unless a thicker course is required for structural purposes. The subgrade beneath slabs-on-grade should be protected at all times from moisture or exposure which may cause softening or disturbance of the subgrade soils. This applies during and after the construction period (and before and after replacement of the required general engineered fill). Should the exposed surface become saturated or disturbed, it should be reworked to achieve the above standards. If the subgrade is properly prepared as noted above, floor slab movements should be limited to less than approximately 25 mm. Slabs-on-grade should be separated from bearing members to allow some differential movement. If this range of differential movement is unacceptable, the owner should consider a structurally supported floor.

Recommended procedures for proof-rolling and backfill materials and further recommendations for slabs-on-grade construction are included in Appendix C.

5.12 BELOW GRADE WALLS

All below-grade walls should be designed to resist lateral earth pressure in an "at-rest" condition. This condition assumes a triangular pressure distribution and may be calculated using the following expression:

$$P_o = K_o (\gamma H + Q)$$

Where: P_0 = Lateral earth pressure "at-rest" condition (no wall movement occurs at a given depth)

 K_o = Coefficient of earth pressure "at-rest" condition (use 0.5 for cohesive backfill and 0.45 for sand and gravel backfill)

 γ = Bulk unit weight of backfill soil (use 19 or 21 kN / m³ for cohesive or granular backfill, respectively).

H = Depth below final grade (m).

Q = Surcharge pressure at ground level (kPa).

It is assumed that drainage is provided for all below-grade walls through the installation of the weeping tile, and hydrostatic pressure will not be a factor in design. An acceptable weeping tile system should consist of a perforated weeping tile wrapped in a geosock or geotextile fabric, in turn surrounded with a minimum of 150 mm thick covering of washed rock (maximum size 25 mm). The weeping tile should have a minimum 0.5 % slope leading to a sump. The preferred method would be to have the sump discharge any water accumulation remotely from the building footprint towards ditches or other stormwater conveyance features. Based on site conditions it is anticipated that the sump pump will run intermittently and more often during and after rain events.

Backfill around concrete walls should not commence before the concrete has reached a minimum two-thirds of its design strength and the walls are laterally braced. Only hand-operated compaction equipment should be employed within 600 mm of the concrete walls. Caution should be used when compacting backfill to avoid high lateral loads caused by excessive compactive effort. A compaction standard of 95 % Standard Procter Density is recommended. To avoid differential wall pressures, the backfill should be brought up evenly around the walls. A minimum 600 mm thick clay cap should be placed at the ground surface to reduce the infiltration of surface water.

5.13 FROST PROTECTION

For protection against frost-action, perimeter footings in heated structures should be extended to such depths as to provide a minimum soil cover of 1.4 m. Isolated or exterior footings in unheated structures should have a minimum soil cover of 2.1 m unless provided with equivalent insulation.

Pipes buried with less than 2.1 m of soil cover should be protected with insulation to avoid frost effects that might cause damage to or breakage of the pipes. Rigid insulation place under areas subject to vehicular wheel loadings should be provided with a minimum thickness of 600 mm of compacted granular base.

5.14 SEPTIC FIELDS

The Safety Codes Council's, Alberta Private Sewage Systems Standard of Practice, 2021, notes that percolation testing can be used in support of a design that used site specific investigation. Previous percolation testing conducted on similar soils indicated percolation rates close to 24 mins/cm (clay), which indicates the area surficial soils may be suitable for septic field development.

For design purposes, groundwater is expected to be measured below 4.5 m from the ground surface and is not expected to impact the design of the fields. The slopes of the area are less than 10 %. Soils within the top 900 mm of the surface are generally considered to be a clay (C) or silty clay (SIC). The topsoil encountered on the site, may be considered a silty clay loam. Surface water features are located beyond the 100 m threshold and there are no bedrock outcrops in the area.

During installation of the weeping trenches, the installer should pay close attention to the soil conditions encountered, to define the extent of any silt or sand pockets (areas subject to faster percolation rates) or medium to high plastic clays (areas of slower percolation rates). These should be immediately reported to the disposal field designer for review prior to completion of the septic disposal field.

5.15 SEISMIC DESIGN

The site classification recommended for seismic site response is Classification D, as noted in Table 4.1.8.4a of the NBCC.

6.0 DESIGN AND CONSTRUCTION GUIDELINES

General design and construction guidelines are provided in Appendix D, under the following supplemental heading:

- Shallow Foundations
- Floor Slabs-on-Grade
- Backfill Materials and Compaction
- Construction Excavations
- Proof Rolling

These guidelines are intended to present standards of good practice. Although supplemental to the main text of this report, they should be interpreted as part of the report. Design recommendations presented herein are based on the premise that these guidelines will be followed. The design and construction guidelines are not intended to represent detailed specifications for the works although they may prove useful in the preparation of such specifications. In the event of any discrepancy between the main text of this report and Appendix D, the main text should govern.

7.0 CLOSURE

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully Submitted

ENGINETY Saf 13/23

Bruce D. Thurber, P.Eng. BDT Engineering Ltd.

P13556

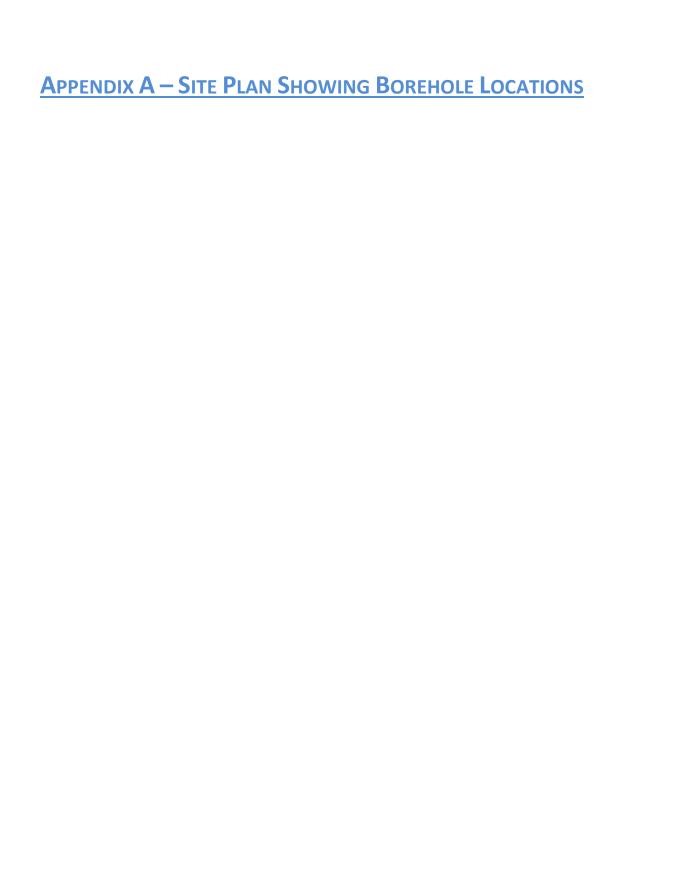
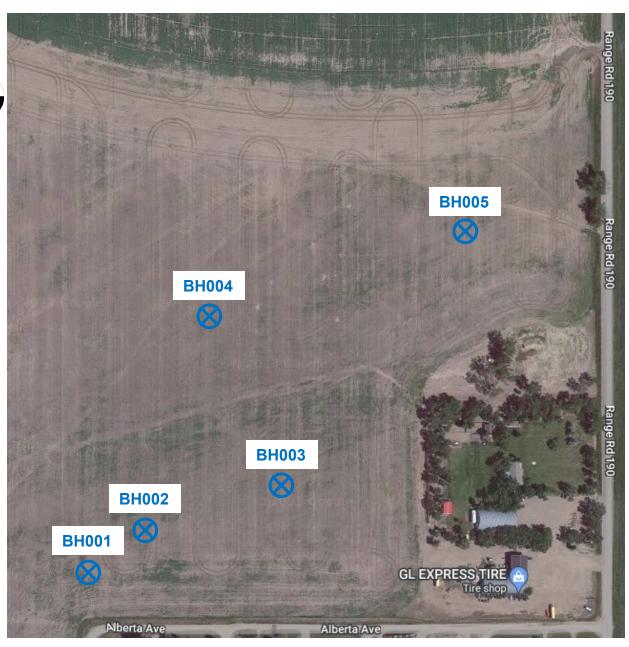



Figure 1 – Site Plan Borehole Location

APPENDIX B – BOREHOLE LOGS

TERMS USED ON BOREHOLE LOGS

TERMS DESCRIBING CONSISTENCY OR CONDITION

COARSE GRAINED SOILS (major portion retained on 0.075mm sieve): Includes (1) clean gravels and sands, and (2) silty or clayey gravels and sands. Condition is rated according to relative density, as inferred from laboratory or in situ tests.

DESCRIPTIVE TERM	RELATIVE DENSITY	N (blows per 0.3m)
Very Loose	0 TO 20%	0 to 4
Loose	20 TO 40%	4 to 10
Compact	40 TO 75%	10 to 30
Dense	75 TO 90%	30 to 50
Very Dense	90 TO 100%	greater than 50

The number of blows, N, on a 51mm 0.D. split spoon sampler of a 63.5kg weight falling 0.76m, required to drive the sampler a distance of 0.3m from 0.15m to 0.45m.

FINE GRAINED SOILS (major portion passing 0.075mm sieve): Includes (1) inorganic and organic silts and clays, (2) gravelly, sandy, or silty clays, and (3) clayey silts. Consistency is rated according to shearing strength, as estimated from laboratory or in situ tests.

DESCRIPTIVE TERM	UNCONFINED COMPRESSIVE
	STRENGTH (KPA)
Very Soft	Less than 25
Soft	25 to 50
Firm	50 to 100
Stiff	100 to 200
Very Stiff	200 to 400
Hard	Greater than 400

NOTE: Slickensided and fissured clays may have lower unconfined compressive strengths than shown above, because of planes of weakness or cracks in the soil.

GENERAL DESCRIPTIVE TERMS

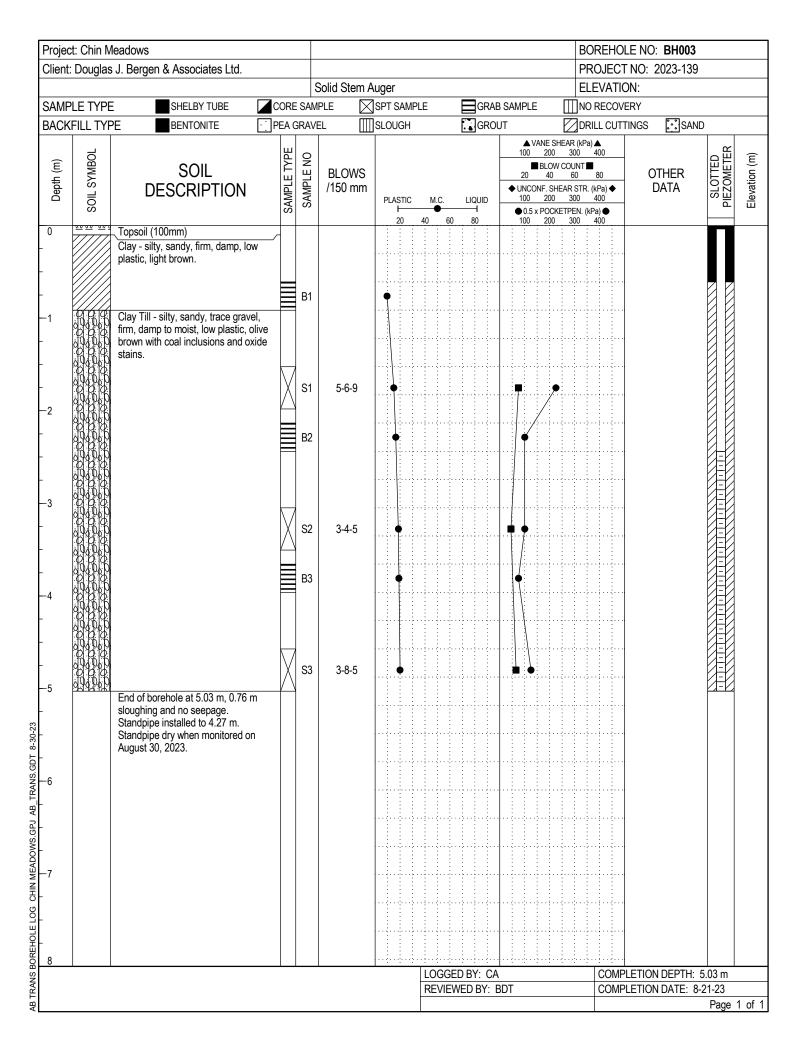
Slickensided - having inclined planes of weakness that are slick and glossy in appearance.

Fissured - containing shrinkage cracks, frequently filled with fine sand or silt; usually more or less vertical.

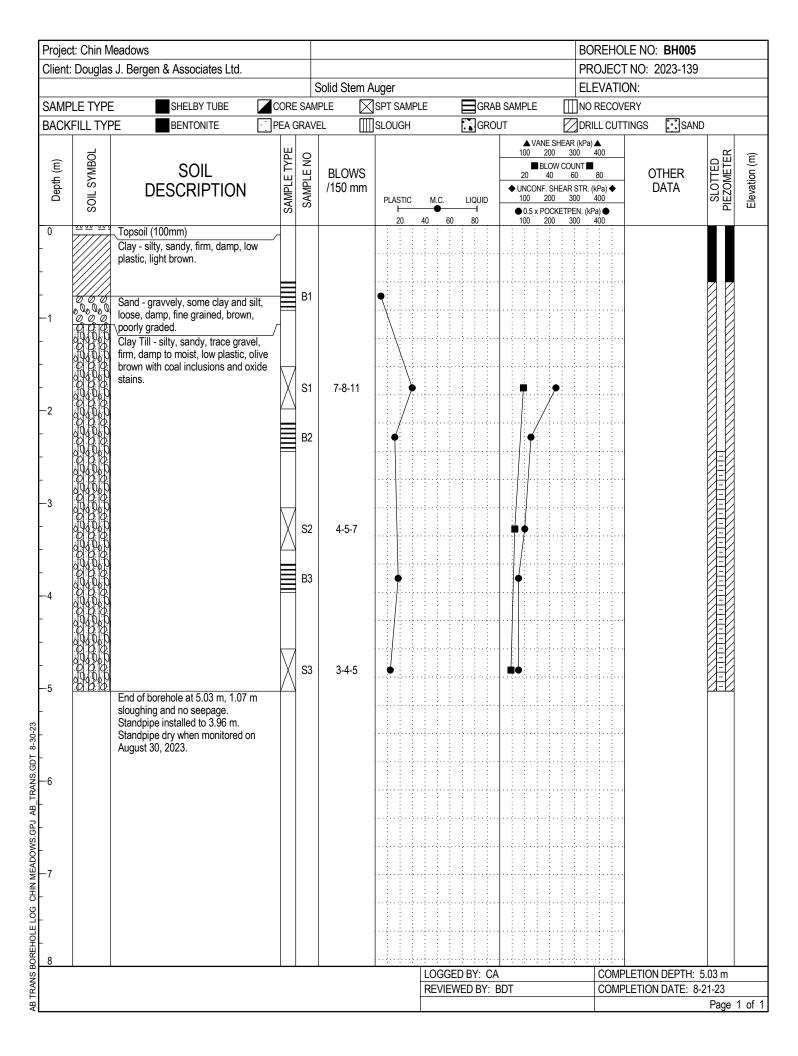
Laminated - composed of thin layers of varying colour and texture.

Interbedded - composed of alternate layers of different soil types.

Calcareous - containing appreciable quantities of calcium carbonate.;


Well graded - having wide range in grain sizes and substantial amounts of intermediate particle sizes.

Poorly graded - predominantly of one grain size, or having a range of sizes with some intermediate size missing.


	MAJOR DIVISION GROUP SYMBOL GROUP SYMBOL								CLASSIFICATION											
MA	Jor Divis	ION										LABORA	TORY (CLASSI	FICATIO	ON CRI	TERIA			
	tion re	SAN	VELS	GV	V						tion symbolis	$C_{c} = D_{60} / D_{c}$ $C_{c} = \frac{(D_{3})^{2}}{D_{10}} \times D_{c}$			ater tha ween 1					
	/ELS coarse frac .75 mm siev	TO	uKA	GF	•					GW, GP, SW, SP GM, GC, SM, SC	Borderline Classification requiring use of dual symbols	Not meetir	g both	criteria	for GW					
s m sieve*	GRA 6 or more of stained on 4	VELS TH	IES	GN	Л				e of fines	GW, GP, GM, GC	Borden requirir	Atterberg I or plasticit				пе	plotti hatch	berg lii ing in ned are		
COARSE-GRAINED SOILS More than 50% retained on 75 µm sieve*	50%	GRA	Ē	GC	;		gravels, -sand-clay mixtures	Classification on basis of percentage of fines			Atterberg limits plot above "A" line or plasticity index greater than 7					borderline classifications requiring use of dual symbols				
COARSE-GR ın 50% retai	e ieve	CLEAN	NDS .	SW	V		raded sands and gravel little or no fines	ly	ation on basis	nusieve musieve	ileve	$C_{c} = D_{60}/D_{1}$ $C_{c} = \frac{(D_{3}}{D_{10}} x$			ater tha ween 1					
More tha	SANDS More than 50% of coarse fraction passes 4.75 mm sieve	TD C	NA.	SF)		graded sands and grav little or no fines	elly	Classific	5% Pass 75 r 12% Pass 75	Pass 75 µm s	Not meeting both criteria for SW								
	SA More than 5 ction passes	SANDS WITH	NES	SN	1	Silty s	ands, sand-silt mixtures		Less than 5% Pass 75 musieve More than 12% Pass 75 musieve 5% to 12% Pass 75 mm sieve	5% to 12%	Atterberg limits plot be or plasticity index less				ne	Atterberg limits plotting in hatched area are				
	fra	SAW	=	sc	;	Clayey	sands, sand-clay mixtu				Atterberg limits plot above "A" line or plasticity index greater than 7					borderline classifications requiring use of dual symbols				
	હ	<u>li</u> mit	<50	MI	L	rock fl	nic silts, very fine sands our, silty or clayey fine s ht plasticity		For cl	lassifica	ation o	of fine-grained					jrained s	oils.		
<u> </u>	SILTS	Liquid limit	>50	MI	Н	diaton	nic silts, micaceous or naceous fine sands or lastic silts		60	1	s nass	ing 425 µm		-ASTIGIT	Y CHART	' 	Τ	Τ	\top	7
by behavior 5 µm sieve	sticity content		<30	CL	-	Inorganic clays of low plasticity, gravelly clays, sandy clays, silty clays, lean clays				0	Equation of "A" line: P I = 0.73 (LL - 20)									
FINE-GRAINED SOILS (by behavior) 50% or more passes 75 µm sieve*	CLAYS Above "A" line on plasticity chart negligible organic content	Liquid limit	30-20	Cl	I		nic clays of medium ity, silty clays	PLASTICITY INDEX				OI.			"A" line				-	
FINE-GRAIN 50% or mo	Above chart neg		>20	CH	1		anic clays of high icity, fat clays				\perp	CL	cı			МН	or OH			
	ORGANIC SILTS AND CLAYS	Liquid limit	<50	OL	-		c silts and organic silty plasticity	clays	7 4 0		10	20	ML 1	40		60	70	80	90	100
	ORGAN	Liqui	>20	OH	1		c clays of medium plasticity				ШОПО ПИІТ									
HIGHL	Y ORGANIC	SOILS		PT	Г	Peat a soils	nd other highly organic		Refe	erence	sed on the material passing the 75 mm sieve erence: ASTM Designation D2487, for identification procedure D2488. USC as modified by PFRA									
					SOIL	COMPO	IENTS			\perp				OVER	SIZE MA	ATER I AI	-			
FR	ACTION			SIEVE S	SIZE		DEFINING R. PERCENTAGE MINOR COM	BY MASS OF	:			Rounded or COBBLES			to 300 i	mm				
			ı	PASSING	RETAIN	ED	PERCENTAGE	DESCRI	PTOR	\perp		BOULDERS		> 300 r	nm					
GRAVE	L coarse fine			mm mm	19 m 4,75		>35 %	"and	ľ			Not rounde			\7	5 mm				
SAND		\dashv		111111	4./5		21 to 35 %	"y-adjec	tive"			ROCKS					bic me	tre in v	olume	
3,440	coarse			75 mm	2.00		10 to 20 %	"som	e"											
	medium fine			00 mm 25 μm	425 µ 75 µ		>0 to 10 %	"trac	e"	\perp										
or	ion plastic) plastic)			75 µ	ım		as above but by behavior													
C II (placino)							-													

Project:	Chin M	leadows													BOREHOLE NO: BH001						
Client: [Douglas	J. Bergen & Associates Ltd.													PROJECT NO: 2023-139						
					Stem A									ELE	ELEVATION:						
SAMPL	E TYPE	SHELBY TUBE	CORE S			SPT SAME	PLE		_		SAMP	LE			RECOV						
BACKF	ILL TYF	PE BENTONITE	PEA GR	AVEL		SLOUGH	LOUGH		GF	ROU	JT 🛮					TINGS SAND					
Depth (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAIMPLE NO.	LOWS 50 mm	PLASTIC	М.	—	LIQUID)	20 ◆ UN0 100 • 0.	BLC 40 CONF. S 20 5 x PO0	OW COU O 6 SHEAR O 30 CKETPE	JNT STR. (I OO EN. (kP	80 (Pa) ◆ 400 a) ●		OTHER DATA	SLOTTED PIEZOMETER	Elevation (m)		
AB IRANS BOREHOLE LOG CHIN MEADOWS GPJ AB IRANS GDI 8:30-23 AB IRANS BOREHOLE LOG CHIN MEADOWS GPJ AB IRANS GDI 8:30-23 AB IRANS BOREHOLE LOG CHIN MEADOWS GPJ AB IRANS GDI 8:30-23 AB IRANS BOREHOLE LOG CHIN MEADOWS GPJ AB IRANS GDI 8:30-23 AB IRANS BOREHOLE LOG CHIN MEADOWS GPJ AB IRANS GDI 8:30-23 AB IRANS BOREHOLE LOG CHIN MEADOWS GPJ AB IRANS GDI 8:30-23 AB IRANS BOREHOLE LOG CHIN MEADOWS GPJ AB IRANS GDI 8:30-23 AB IRANS BOREHOLE LOG CHIN MEADOWS GPJ AB IRANS GDI 8:30-23 AB IRANS BOREHOLE LOG CHIN MEADOWS GPJ AB IRANS GDI 8:30-23 AB IRANS BOREHOLE LOG CHIN MEADOWS GPJ AB IRANS GDI 8:30-23 AB IRANS BOREHOLE LOG CHIN MEADOWS GPJ AB IRANS GDI 8:30-23 AB IRANS BOREHOLE LOG CHIN MEADOWS GPJ AB IRANS GDI 8:30-23 AB IRANS GDI 8:3		Topsoil (100mm) Clay - silty, sandy, firm, damp, low plastic, light brown. Clay Till - silty, sandy, trace gravel firm, damp to moist, low plastic, oli brown with coal inclusions and oxid stains. - moist End of borehole at 5.03 m, 0.61 m sloughing from surface topsoil and seepage. Standpipe installed to 4. m. Standpipe dry when monitored August 30, 2023.	s s s s s s s s s s s s s s s s s s s	31 : 32 :	2-2-4 2-3-5 4-5-6	20	40	60	80		100				400						
8 ROKEH																					
ANS				LOGGED BY: CA									COMPLETION DEPTH: 5.03 m								
퓠				REVIEWED BY: BDT									COMPLETION DATE: 8-21-23 Page 1 of 1								
∢ ∟																		i age	1 01		

Projec	t: Chin M	leadows						BOREHOLE NO: BH002							
Client	: Douglas	J. Bergen & Associates Ltd.						PROJECT NO: 2023-139							
					Solid Stem A					ELEVATION:					
	LE TYPE		CORE			SPT SAMPI	.E			NO RECOVERY					
BACK	FILL TYF	PE BENTONITE	PEA (GRA\	/EL I	SLOUGH		GROU		DRILL CUTTING	SS 🖸 SAND				
Depth (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE NO	BLOWS /150 mm	PLASTIC	M.C.	LIQUID	◆ UNCONF. SHEAR 100 200 3 ● 0.5 x POCKETP	UNT ■ 60 80 ! STR. (kPa) ◆ 600 400 EN. (kPa) ●	OTHER DATA	SLOTTED PIEZOMETER	Elevation (m)			
AB TRANS BOREHOLE LOG CHIN MEADOWS.GP1 AB TRANS.GDT 8-30-23 AB TRANS BOREHOLE LOG CHIN MEADOWS.GP1 AB TRANS.GDT 8-30-23 B		Topsoil (100mm) Clay - silty, sandy, firm, damp, low plastic, light brown. Clay Till - silty, sandy, trace gravel, firm, damp to moist, low plastic, olive brown with coal inclusions and oxide stains. - inclusions of bedrock End of borehole at 5.03 m, no sloughing and seepage. Standpipe installed to 5.03 m. Standpipe dry when monitored on August 30, 2023.	SAMPLE TYPE	B1 B2 S2 S3	4-7-11 3-4-4 4-5-7	PLASTIC	40 60	LIQUID 80	● 0.5 x POCKETP				3/I		
ANS BOREHOLE LOG								D BY: CA			TION DEPTH: 5				
<u> </u>							REVIEV	VED BY: B	BUT	COMPLET	TION DATE: 8-2		4 6 4		
8											Page	1 of 1			

Project:	Chin M	leadows												BOREHOLE NO: BH004					
Client: [Douglas	J. Bergen & Associates Ltd.							ı	PROJECT NO: 2023-139									
				Solid S									ELEVATION:						
SAMPL			CORE S			SPT SAME	PLE		_	B SAMP	LE		NO RECC						
BACKF	ILL TYF	PE BENTONITE	PEA GR	AVEL		SLOUGH		GROL						UTTINGS	SAND				
Depth (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE		OWS) mm	PLASTIC	M.C		LIQUID	20 ◆ UN 10	BLOW 0 40 CONF. SH 0 200 0.5 x POCK	COUN 60 IEAR ST 300 ETPEN	80 FR. (kPa) ◆ 400 I. (kPa) ●		OTHER DATA	SLOTTED PIEZOMETER	Elevation (m)		
AB IKANS BOREHOLE LOG CHIN MEADOWS.GFU AB IKANS.GDI 8:30-23 AB IKANS BOREHOLE LOG CHIN MEADOWS.GFU AB IKANS.GDI 8:30-23 AB IKANS BOREHOLE LOG CHIN MEADOWS.GFU AB IKANS.GDI 8:30-23 B		Topsoil (100mm) Clay - silty, sandy, firm, damp, low plastic, light brown. Clay Till - silty, sandy, trace grave firm, damp to moist, low plastic, ol brown with coal inclusions and oxistains. - inclusions of bedrock / mudstone - inclusions of bedrock / mudstone Bud of borehole at 5.03 m, no sloughing or seepage. Standpipe installed to 5.03 m. Standpipe dry when monitored on August 30, 20	I, ive de E	32 2-333	5-7 3-5	20	40		80		200	300	400						
8 80KEH																			
ANS				LOGGED BY: CA REVIEWED BY: BDT								COMPLETION DEPTH: 5.03 m							
<u> </u>						KE	/ I = V V E	זם ט.	וחמ			COMPLETION DATE: 8-21-23 Page 1 of 1							
																. აყა			

APPENDIX C – GENERAL CONSTRUCTION GUIDELINES

Shallow Foundations

Design and construction of shallow foundations should comply with relevant Building Code requirements.

The term 'shallow foundations' includes strip and spread footings, mat slab and raft foundations. Minimum footing dimensions in plan should be 0.45m and 0.9m for strip and square footings respectively.

No loose, disturbed or sloughed material should be allowed to remain in open foundation excavations.

Hand cleaning should be undertaken to prepare an acceptable bearing surface. Recompaction of disturbed or loosened bearing surface may be required.

Foundation excavations and bearing surfaces should be protected from rain, snow, freezing temperatures, excessive drying and the ingress of free water before, during and after footing construction.

Footing excavations should be carried down into the designated bearing stratum.

After the bearing surface is approved, a mud slab should be poured to protect the soil and provide a working surface for construction, should immediate foundation construction not be intended. All constructed foundations should be placed on unfrozen soils, which should be at all times protected from frost penetration.

All foundation excavations and bearing surfaces should be inspected by a qualified geotechnical engineer to check that the recommendations contained in this report have been followed.

Where over-excavation has been carried out through a weak or unsuitable stratum to reach into a suitable bearing stratum or where a foundation pad is to be placed above stripped natural ground surface such over-excavation may be backfilled to subgrade elevation utilizing either structural fill or lean-mix concrete. These materials are defined under the separate heading 'Backfill Materials and Compaction'.

Floor Slabs-on-Grade

All soft, loose or organic material should be removed from beneath slab areas. If any local 'hard spots' such as old basement walls are revealed beneath the slab area, these should be over-excavated and removed to not less than 0.9 m below underside of slab level. The exposed soil should be proof-rolled and the final grade restored by general engineered fill placement. If proof-rolling reveals any soft or loose spots, these should be excavated and the desired grade restored by general engineered fill placement. Proof-rolling should be carried out in accordance with the recommendations given elsewhere in this Appendix. The subgrade should be compacted to a depth of not less than 0.3m to a density of not less than 98 percent Standard Proctor Maximum Dry Density (ASTM Test Method D698).

A levelling course of 20mm crushed gravel at least 150 mm in compacted thickness, is recommended directly beneath all slabs-on-grade. Alternatively, a minimum thickness of 150mm of pit-run gravel overlain by a minimum thickness of 50 mm of 20mm crushed gravel may be used. Very coarse material (larger than 25 mm diameter) should be avoided directly beneath the slab-on-grade to limit potential stress concentrations within the slab. All levelling courses directly under floor slabs should be compacted to 100 percent of Standard Proctor maximum dry density.

General engineered fill, pit-run gravel and crushed gravel are defined under the heading 'Backfill Materials and Compaction' elsewhere in this Appendix.

The slab should be structurally independent from walls and columns supported on foundations. This is to reduce any structural distress that may occur as a result of differential soil movements. If it is intended to place any internal non-load bearing partition walls directly on a slab-on-grade, such walls should also be structurally independent from other elements of the building founded on a conventional foundation system so that some relative vertical movement of the walls can occur freely.

The excavated subgrade beneath slabs-on-grade should be protected at all times from rain, snow, freezing temperatures, excessive drying and the ingress of free water. This applies during and after the construction period.

A minimum slab concrete thickness of 100mm is recommended. Control joints should be provided in all slabs. Typically for a 125mm slab thickness; control joints should be placed on a 3 m square grid, should be sawn to a depth of one-quarter the slab thickness and have a width of approximately 3 mm.

Wire mesh reinforcement, 150 mm square grid, should be provided to reduce the possibility of uncontrolled slab cracking. The mesh should be adequately supported and should be located at mid-height of the slab with adequate cover.

Backfill Materials and Compaction

1.0 Definitions

"Landscape fill" is typically used in areas such as berms and grassed areas where settlement of the fill and noticeable surface subsidence can be tolerated. "Landscape fill" may comprise soils without regard to engineering quality.

"General engineered fill" is typically used in areas where a moderate potential for subgrade movement is tolerable, such as asphalt (i.e., flexible) pavement areas. "General engineered fill" should comprise clean, granular or clay soils.

"Select engineered fill" is typically used below slabs-on-grade or where high volumetric stability is desired, such as within the footprint of a building. "Select engineered fill" should comprise clean, well-graded granular soils or inorganic low to medium plastic clay soils.

"Structural engineered fill" is used for supporting structural loads in conjunction with shallow foundations. "Structural engineered fill" should comprise clean, well-graded granular soils.

"Lean-mix concrete" is typically used to protect a subgrade from weather effects including excessive drying or wetting. "Lean-mix concrete" can also be used to provide a stable working platform over weak subgrades. "Lean-mix concrete" should be low strength concrete having a minimum 28-day compressive strength of 3.5 MPa. Standard Proctor Density (SPD) as used herein means Standard Proctor Maximum Dry Density (ASTM Test Method D698). Optimum moisture content is defined in ASTM Test Method D698.

2.0 General Backfill and Compaction Recommendations

Exterior backfill adjacent to abutment walls, basement walls, grade beams, pile caps and above footings, and below highway, street, or parking lot pavement sections should comprise "general engineered fill" materials as defined above. Exterior backfill adjacent to footings, foundation walls, grade beams and pile caps and within 600 mm of final grade should comprise inorganic, cohesive "general engineered fill". Such backfill should provide a relatively impervious surficial zone to reduce seepage into the subsoil against the structure.

Backfill should not be placed against a foundation structure until the structure has sufficient strength to withstand the earth pressures resulting from placement and compaction. During compaction, careful observation of the foundation wall for deflection should be carried out continuously. Where deflections are apparent, the compactive effort should be reduced accordingly.

In order to reduce potential compaction induced stresses, only hand-held compaction equipment should be used in the compaction of fill within 1 m of retaining walls or basement walls. If compacted fill is to be placed on both sides of the wall, they should be filled together so that the level on either side is within 0.5 m of each other.

All lumps of materials should be broken down during placement. Backfill materials should not be placed in a frozen state, or placed on a frozen subgrade.

Where the maximum-sized particles in any backfill, material exceed 50 percent of the minimum dimension of the cross-section to be backfilled (e.g., lift thickness), such particles should be removed and placed at other more suitable locations on site or screened off prior to delivery to site

Bonding should be provided between backfill lifts. For fine-grained materials, the previous lift should be scarified to the base of the desiccated layer, moisture-conditioned, and recompacted and bonded thoroughly to the succeeding lift. For granular materials, the surface of the previous lift should be scarified to about a 75 mm depth followed by proper moisture-conditioning and recompaction.

3.0 COMPACTION AND MOISTURE CONDITIONING

"Landscape fill" material should be placed in compacted lifts not exceeding 300 mm and compacted to a density of not less than 90 percent of SPD unless a higher percentage is specified by the jurisdiction.

"General engineered fill" and "select engineered fill" materials should be placed in layers of 150 mm compacted thickness and should be compacted to not less than 98 percent of SPD. Note that the contract may specify higher compaction levels within 300 mm of the design elevation. Cohesive materials placed as "general engineered fill" or "select engineered fill" should be compacted at 0 to 2 percent above the optimum moisture content. Note that there are some silty soils which can become guite unstable when compacted above optimum moisture content.

Granular materials placed as "general engineered fill" or "select engineered fill" should be compacted at slightly below (0 to 2%) the optimum moisture content. "Structural engineered fill" material should be placed in compacted lifts not exceeding 150 mm in thickness and compacted to not less than 100 percent of SPD at slightly below (0 to 2%) the optimum moisture content.

4.0 "GENERAL ENGINEERED FILL"

Low to medium plastic clay is considered acceptable for use as "general engineered fill," assuming this material is inorganic and free of deleterious materials. Materials meeting the specifications for "select engineered fill" or "structural engineered fill" as described below would also be acceptable for use as "general engineered fill."

5.0 "SELECT ENGINEERED FILL"

Low to medium plastic clay with the following range of plasticity properties is generally considered suitable for use as "select engineered fill":

Liquid Limit = 20 to 40% Plastic Limit = 10 to 20% Plasticity Index = 10 to 30%

Test results should be considered on a case-by-case basis.

"Pit-run gravel" and "fill sand" are generally considered acceptable for use as "select engineered

fill." See exact project or jurisdiction for specifications. The "pit-run gravel" should be free of any form of coating and any gravel or sand containing clay, loam or other deleterious materials should be rejected. No material oversize of the specified maximum sieve size should be tolerated. This material would typically haves a fines content of less than 10%. The materials above are also suitable for use as "general engineered fill."

Construction Excavations

Construction should be in accordance with good practice and comply with the requirements of the responsible regulatory agencies.

All excavations greater than 1.5m deep should be sloped or shored for worker protection.

Shallow excavations up to about 3m depth may use temporary sideslopes of 1H:1V. A flatter slope of 2H:1V should be used if groundwater is encountered. Localized sloughing can be expected from these slopes.

Deep excavations or trenches may require temporary support if space limitations or economic considerations preclude the use of sloped excavations.

For excavations greater than 3m depth, temporary support should be designed by a qualified geotechnical engineer. The design and proposed installation and construction procedures should be submitted to BDT for review.

The construction of a temporary support system should be monitored. Detailed records should be taken of installation methods, materials, in situ conditions and the movement of the system. If anchors are used, they should be load tested. BDT can provide further information on monitoring and testing procedures if required.

Attention should be paid to structures or buried service lines close to the excavation. For structures, a general guideline is that if a line projected down, at 45 degrees from the horizontal from the base of foundations of adjacent structures intersects the extent of the proposed excavation, these structures may require underpinning or special shoring techniques to avoid damaging earth movements. The need for any underpinning or special shoring techniques and the scope of monitoring required can be determined when details of the service ducts and vaults, foundation configuration of existing buildings and final design excavation levels are known.

No surface surcharges should be placed closer to the edge of the excavation than a distance equal to the depth of the excavation, unless the excavation support system has been designed to accommodate such surcharge.

Proof Rolling

Proof-rolling is a method of detecting soft areas in an 'as-excavated' subgrade for fill, pavement, floor or foundations or detecting non-uniformity of compacted embankment. The intent is to detect soft areas or areas of low shear strength not otherwise revealed by means of test holes, density testing, or visual examination of the site surface and to check that any fill placed or subgrade meets the necessary design strength requirements.

Proof-rolling should be observed by qualified geotechnical personnel.

Proof-rolling is generally accomplished by the use of a heavy (15 to 60 tonne) rubber-tired roller having 4 wheels abreast on independent axles with high contact wheel pressures (inflation pressures ranging from 550 kPa (80psi) up to 1030 kPa (150 psi).

A heavily loaded tandem axle gravel truck may be used in lieu of the equipment described in the paragraph above. The truck should be loaded to approximately 10 tonnes per axle and a minimum tire pressure of 550 kPa (80 psi). Ground speed - maximum 8 km/hr recommended 4 km/hr.

The recommended procedure is two complete coverages with the proof-rolling equipment in one direction and a second series of two coverages made at right angles to the first series; one 'coverage' means that every point of the proof-rolled surface has been subjected to the tire pressure of a loaded wheel. Less rigorous procedures may be acceptable under certain conditions subject to the approval of an engineer.

Any areas of soft, rutted or displaced materials detected should be either recompacted with additional fill or the existing material removed and replaced with general engineered fill, or properly moisture conditioned as necessary.

The surface of the grade under the action of the proof-roller should be observe, noting; visible deflection and rebound of the surface, formation of a crack pattern in the compacted surface or shear failure in the surface or granular soils as ridging between wheel tracks.

If any part of an area indicates significantly more distress than other parts, the cause should be investigated, by, for example, shallow auger holes.

In the case of granular subgrades, distress will generally consist of either compression due to insufficient compaction or shearing under the tires. In the first case, rolling should be continued until no further compression occurs. In the second case, the tire pressure should be reduced to a point where the subgrade can carry the load without significant deflection and subsequently gradually increased to it specified pressure as the subgrade increases in shear strength under this compaction.

APPENDIX B

Trip Generation Letters

4105 7 Street SE Calgary, AB T2G 2Y9 T: 403.254.0544 F: 403.254.9186

October 5, 2023

Our Reference: 28449

Douglas Bergen & Associates Ltd.

PO Box 1667 Coaldale, Alberta T1M 1N3

Attention: Douglas Bergen

Dear Sir:

Chin Subdivision Trip Generation Reference:

1.0 Introduction

ISL Engineering and Land Services Ltd. (ISL) was retained by Douglas Bergen & Associates Ltd. to determine the trip generation of a 12-lot country residential and school development in the Hamlet of Chin, Municipal District (MD) of Taber, Alberta. The school will have 70 students and 6 teachers.

The development is located just north of Highway 3 and west of Range Road 19-0. As part of the development, Naismith Street is proposed to be extended north and access to each lot is off the extended segment of Naismith Street. Figure 1 shows the site plan.

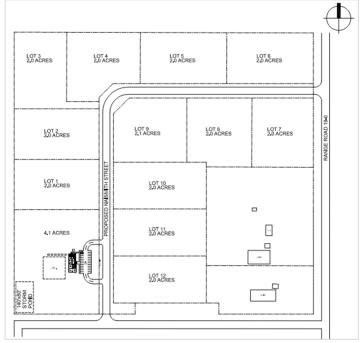


Figure 1: Site Plan

2.0 Analysis

In the MD's General Standards of Development in Schedule 5 of the Land Use Bylaw No. 1677, the guideline does not indicate when a TIA is required to be undertaken. Per typical engineering standards, a site that generates less than 100 trips during the commuter peak hour (between 7-9 AMand 4-6 PM) does not require a TIA.

For the 12 residential lots, the single-family trip generation rates from the ITE Trip Generation Manual, 11th Edition, was referenced. This manual is an industry accepted manual to estimate traffic.

Single Family Residential (ITE Rates):

• AM Peak: 0.70 trips / hour / unit: 9 trips per hour • PM Peak: 0.94 trips / hour / unit: 12 trips per hour

As there are no trip generation rates for rural schools in the ITE Manual, the following were assumed. The school times are 8:30 AM to 3:00 PM. Due to the rural location of the school, 90% of the students (63 students) are expected to be bussed to school on 2 buses while 10% of the students (7 students) are expected to be dropped off.

School AM Start:

• 2 buses: 2 trips in and 2 trips out

• 6 teachers: 6 trips in

• 7 student Drop offs: 7 trips in and 7 trips out

AM Peak Total: 24 trips (15 trips in, 9 trips out)

School PM End:

• As the school hours end outside of the typical PM commuter peak (4-6 PM), no trips are generated in the PM peak.

• PM Peak Total: 0 trips

In total, there are 33 trips in the AM peak and 12 trips in the PM peak. This is a negligible amount of traffic and will have minimal impact on existing traffic operations.

3.0 Closing

From the transportation review of the proposed 12 country residential homes and school, the following conclusions are drawn:

 The development generates at most 33 and 12 additional trips per hour in the AM and PM peaks, respectively. The amount of traffic generated is negligible and will have minimal impact on existing traffic operations.

If any additional information is required, please contact the undersigned at your convenience.

Sincerely.

Alex Ho, P.Eng., PTOE Manager, Traffic Engineering

4105 7 Street SE Calgary, AB T2G 2Y9 T: 403.254.0544 F: 403.254.9186

February 15, 2024

Our Reference: 28449

Douglas Bergen & Associates Ltd.

PO Box 1667 Coaldale, Alberta T1M 1N3

Attention: Douglas Bergen

Dear Sir:

Chin Subdivision Trip Generation Reference:

1.0 Introduction

ISL Engineering and Land Services Ltd. (ISL) was retained by Douglas Bergen & Associates Ltd. to determine the trip generation of a 12-lot country residential and school development in the Hamlet of Chin, Municipal District (MD) of Taber, Alberta. The school will have 70 students and 6 teachers.

The development is located just north of Highway 3 and west of Range Road 19-0. As part of the development, Naismith Street is proposed to be extended north and access to each lot is off the extended segment of Naismith Street. Figure 1 shows the site plan.

The lots, roads and school are anticipated to be constructed in September 2024. The houses on the residential lots will be built when a buyer purchases the lot.

Figure 1: Site Plan

2.0 Trip Generation

In the MD's General Standards of Development in Schedule 5 of the Land Use Bylaw No. 1677, the guideline does not indicate when a TIA is required to be undertaken. Per typical engineering standards, a site that generates less than 100 trips during the commuter peak hour (between 7-9 AMand 4-6 PM) does not require a TIA.

For the 12 residential lots, the single-family trip generation rates from the ITE Trip Generation Manual, 11th Edition, was referenced. This manual is an industry accepted manual to estimate traffic.

- Single Family Residential (ITE Rates):
 - AM Peak: 0.70 trips / hour / unit: 9 trips per hour
 - PM Peak: 0.94 trips / hour / unit: 12 trips per hour

As there are no trip generation rates for rural schools in the ITE Manual, the following were assumed. The school times are 8:30 AM to 3:00 PM. Due to the rural location of the school, 90% of the students (63 students) are expected to be bussed to school on 2 buses while 10% of the students (7 students) are expected to be dropped off.

- School AM Start:
 - 2 buses: 2 trips in and 2 trips out
 - 6 teachers: 6 trips in
 - 7 student Drop offs: 7 trips in and 7 trips out
 - AM Peak Total: 24 trips (15 trips in, 9 trips out)
- School PM End:
 - As the school hours end outside of the typical PM commuter peak (4-6 PM), no trips are generated in the PM peak.
 - PM Peak Total: 0 trips

In total, there are 33 trips in the AM peak and 12 trips in the PM peak. This is a negligible amount of traffic and should have minimal impact on existing traffic operations.

3.0 Highway Traffic

The latest traffic volumes on Highway 3 at Range Road 19-0 were downloaded from Alberta Transportation and Economic Corridors' (ATEC) website. In 2022, the Average Annual Daily Traffic (AADT) was 8,080 vehicles per day (vpd) while the Average Summer Daily Traffic (ASDT) was 8,860 vpd. As compared to the 10-year traffic history in 2012, the AADT (8,100 vpd) declined by -0.02% per year while the ASDT (8,650 vpd) grew by 0.24% per year. Based on the preceding, there is very minimal growth on Highway 3 at Range Road 19-0.

As compared to the Highway 3 peak hour traffic volumes (857 and 860 vehicles per hour in the AM and PM, respectively), the development will increase the traffic on Highway 3 by 4% and 1% in the AM and PM peak, respectively. This is a negligible amount and should have minimal impact on Highway 3, thus upgrades to the highway are not required.

4.0 Closing

From the transportation review of the proposed 12 country residential homes and school, the following conclusions are drawn:

- The development generates at most 33 and 12 additional trips per hour in the AM and PM peaks, respectively. The amount of traffic generated is negligible and will have minimal impact on existing traffic operations.
- On Highway 3 at Range Road 19-0, there has been minimal growth over the last 10 years.
- The development will increase the traffic on Highway 3 by 4% and 1% in the AM and PM peak, respectively. This is a negligible amount and should have minimal impact on Highway 3, thus upgrades to the highway are not required.

If any additional information is required, please contact the undersigned at your convenience.

Sincerely,

Alex Ho, P.Eng., PTOE

Manager, Traffic Engineering

APPENDIX C

Osprey Engineering Septic Report

27 November 2023 Our file: 230876

Douglas J. Bergen Associates Ltd. Box 1667 Coaldale, AB, TIM 1N3

Attention: Douglas Bergen, CET

RE: Chin Area Structure Plan

North Side of Alberta Avenue, Hamlet of Chin (Blocks A, B & E, Plan 899 AA, NE25-9-19-4) Private Sewage Treatment Systems (PSTS) Assessment

Dear Douglas,

The following Private Sewage Treatment Systems Assessment was performed in support of an application for subdivision of the above-noted parcel in August 2023. *The proposed lots were found to be suitable for private sewage treatment systems (PSTS) with limitations noted.*

The site investigation and report were performed and prepared consistent with the following documents:

- (Safety Codes Council, 2021), *Alberta Private Sewage Standard of Practice*, Alberta Municipal Affairs, Edmonton ["SOP 2021"],
- (Alberta Association of Municipal Districts & Counties in parthnership with Alberta Municipal Affairs, 2011) Alberta Association of Municipal Districts and Counties [AAMDC] 2011, Model Process for Subdivision Approval and Private Sewage ["Model Process"] and related documents.

I. PROJECT BACKGROUND

The subject parcel is located on the west side of Range Road 190, and north of Alberta Avenue, in The Hamlet of Chin. The area of the subject parcel is 15.9 ha [39.4 acres] more or less. The location of the parcel is shown on Figure 1. The parcel is presently a farming field with no existing dwellings or buildings.

The owners propose to subdivide twelve country residential lots and one larger lot for a school. The proposed country residential lots will be 0.8 ha [2.0 ac]. The school lot will be 1.7 ha [4.1 ac]. The proposed lots will be accessed by extending the existing Naismith Street. The preferred lot layout is shown on Figure 2.

The proposed lots will be served by private water cisterns. The proposed lots are intended to be served by new private sewage systems.

II. METHODOLOGY AND LIMITATION

In support of a subdivision, Lethbridge County has requested that a private sewage treatment systems (PSTS) assessment be completed to justify that wastewater from dwellings on the proposed lots can be treated and dispersed on site consistent with relevant safety codes. Methodology in describing acceptable conditions for adequate operation of private sewage treatment systems (PSTS) is consistent with (Safety Codes Council, 2021).

As such, all loading rates are as per SOP 2021. No percolation tests were performed as these are no longer considered acceptable evidence in support of the selection of soil loading rates in SOP 2021.

Observations were taken from publicly available background information and field assessments noted:

CHIN AREA STRUCTURE PLAN

PAGE 2

NORTH SIDE OF ALBERTA AVENUE, HAMLET OF CHIN (BLOCKS A, B & E, PLAN 899 AA, NE25-9-19-4)

27 NOVEMBER

NORTH SIDE OF ALBERTA AVENUE, HAMLET OF CHIN (BLOCKS A, B & E, PLAN 899 AA, NE25-9-19-4) 2023

PRIVATE SEWAGE TREATMENT SYSTEMS (PSTS) ASSESSMENT DOUGLAS J. BERGEN ASSOCIATES LTD.

28 August 2023: Osprey soil observations.

Observation and recording of the soil profiles was performed as directed in SOP 2021 using forms based on those provided by Alberta Municipal Affairs. Soil samples from the test pits were submitted to Down to Earth Labs of Lethbridge for texture analysis. These results are appended.

This report is to be used by the owners of the parcels noted and Lethbridge County in support of the area structure plan and eventual subdivision of the subject parcel, as described in the Model Process. It is not intended as a full system design. Full design and site investigation (including digging additional test holes or other tests as may be required) by a licensed installer consistent with the relevant standard of practice in force at the time is still assumed to be required as part of the permit process.

III. DESCRIPTION

This description is based on information provided by the owners of the parcel and information obtained from various public sources. Topography of the parcel based on a recent survey (performed by Mike Spencer Geomatics in September 2023) is included showing existing surface features within and immediately surrounding the subject parcel.

A. Density and Cumulative Impact

The surrounding quarter sections have 3 or fewer parcels per quarter section. The quarter sections to the south which includes The Hamlet of Chin has approximately 89 parcels within the quarter section. Figure 3 indicates the number of parcels in each of the surrounding quarter-sections based on cadastral data provided by AltaLIS and is current to the date of this report. All country residential parcels in the area are assumed to be served by individual private sewage systems with water services from private water cisterns. Wells noted in the provincial database for the surrounding area are listed in Appendix C.

The cumulative impact due to additional density due to the proposed subdivision does not extend beyond the lot boundaries for the following reasons:

Parcel sizes are sufficient and area density is low to moderate. As such, there will be adequate dilution due to precipitation such that nutrient loading due to the additional wastewater generated will not result in nutrient concentrations greater than CCME guidelines. Given this, no additional source water quality impact assessment is justified for this subdivision.

B. Topography, Surface Water and Vegetation

Surface features are shown on Figure 4. The site encompasses undulating, low relief terrain. The subject parcel does not contain any steep slopes. The average slope of the parcel is 1%. A depression and manmade swale crosses Lots 1, 7, 8, 10, 11, and the school. These areas could be subject to overland flows and pooling water, and it may be prudent to locate PSTS outside of this area. If the depression has a defined "shoreline" per the SOP, then a setback of 15.0 m [50 ft] would be prescribed from this shoreline. If no shoreline is noted, then no setback is applicable. These do not have a defined shoreline; therefore no setback is applicable.

An irrigation canal exists to the west but is more than 1000 m from the subject parcel. No rivers, lakes, creeks, or streams affect the parcel.

No springs or wells using shallow groundwater (GWUDI) for domestic purposes were noted within 150 m (500 feet) of the subject parcel. No dugouts or surface water bodies were noted as being used for domestic purposes within 150 m (500 feet) of the subject parcel.

NORTH SIDE OF ALBERTA AVENUE, HAMLET OF CHIN (BLOCKS A, B & E, PLAN 899 AA, NE25-9-19-4) 2023

PRIVATE SEWAGE TREATMENT SYSTEMS (PSTS) ASSESSMENT

DOUGLAS J. BERGEN ASSOCIATES LTD.

Vegetation across the subject parcel is as follows:

Crops

Generally, the vegetation on site does not indicate features that would limit PSTS.

C. Encumbrances

No rights-of-way exist within the subject parcel. A pipeline right-of-way (011 3349) and a waterline right-of-way (011 0603) exist to the north of the subject parcel. Standard setback (horizontal separation) distances for various PSTS components as per SOP 2021 are as follows:

- All soil-based treatment components (fields, mounds, etc...) must be 100 m from a licensed municipal water well.
- All soil-based treatment components (fields, mounds, etc...) must be 90 m from a lake, river, stream, or creek *unless* "...a principal building or other development feature is located between the soil based treatment system and the lake, river, stream or creek such that a failure causing effluent on the ground will be obvious and create an undesirable impact on the owner..." (SOP 2021, Art. 2.1.2.4). Generally, if the dwelling is constructed between the stream and the soil based treatment component, this is acceptable and the setbacks to a water source or water course as noted below are applicable;
- Septic tanks, settling tanks and effluent tanks:
 - o 10 m from a water source,
 - o 10 m from a water course,
 - o 1 m from a property line and
 - o 1 m from a building.
- Packaged (secondary) treatment plants and settling tanks which include pre-aeration:
 - o Same as for septic tanks *except*
 - o 6 m from a property line.
- Sand filters (to foot of berm):
 - o Same as for septic tanks.
- Recirculating gravel filters (to foot of berm):
 - o Same as for septic tanks except
 - o 3 m from property line.
- Treatment field (edge of weeping lateral trench):
 - o 15 m from a water source,
 - o 15 m from a water course (unless building is located between water course and field),
 - o 1.5 m from a property line,
 - o 10 m from a basement, cellar, or crawl space,
 - o 1 m from a building without a permanent foundation,
 - o 5 m from a building with a permanent foundation but without a basement cellar or crawl space (e.g. slab-on-grade) and
 - 5 m from a septic tank or packaged sewage treatment plant.
- Treatment mound (from point where side slope of mound berm intersects natural soil contour):
 - Same as for a treatment field except
 - o 3 m from a property line,

27 November

CHIN AREA STRUCTURE PLAN

PAGE 4

NORTH SIDE OF ALBERTA AVENUE, HAMLET OF CHIN (BLOCKS A, B & E, PLAN 899 AA, NE25-9-19-4)

27 NOVEMBER

NORTH SIDE OF ALBERTA AVENUE, HAMLET OF CHIN (BLOCKS A, B & E, PLAN 899 AA, NE25-9-19-4) 2023

PRIVATE SEWAGE TREATMENT SYSTEMS (PSTS) ASSESSMENT DOUGLAS J. BERGEN ASSOCIATES LTD.

- o 3 m from a septic tank,
- o 10 m from a basement, cellar, or crawl space and
- o 10 m from a building with a permanent foundation but without a basement cellar or crawl space (e.g. slab-on-grade).

D. Soils

According to the Alberta Soil Information Viewer (soil polygons 1337 and 1334) (Government of Alberta, 2023), the following soil series may be present in the subject parcel.

- Cranford (CFD): Orthic brown chernozem with medium textured soils (loam, silty loam, and very fine sandy loam) on medium or fine textured till.
- Chin (CHN): Orthic brown chernozem with medium textured soil (loam, silty loam, and very fine sandy loam) on medium textured sediments (loam to very fine sandy loam) deposited by wind and water.

CFD, and CHN would be generally amenable to PSTS.

General limitations for PSTS due to soil conditions include possible lower loading rates for dispersing effluent on fine-textured soil (e.g. clay loam or finer) or coarse textured soils (e.g. sand, loamy sand, or sandy loam) with weak or poor structure, restricting soil horizons which limit downward movement and high groundwater or seasonal high groundwater conditions.

All systems dispersing primary treated (septic tank) effluent (Effluent Level 1 per SOP 2021) to the soil via treatment fields must maintain a vertical separation of at least 1.5 m [5 ft] to restricting soil horizons, groundwater, and seasonal high groundwater. Systems dispersing secondary-treated (Effluent Level 2 or better per SOP 2021), including all treatment mounds, must maintain a vertical separation of at least 0.9 m [3 ft] to restricting soil horizons.

Soil profiles were developed for thirteen test pits. One test pit was excavated within each proposed lot, as shown on Figure 4. As noted, detailed soil profiles and laboratory texture analyses are appended.

Soils were generally consistent with the soil series noted for this area.

- Lot 1: A brown loam A-horizon (Ap) to approximately 23 cm [9"] overlays a pale brown loam Bm-horizon to approximately 130 cm [51"] which transitions to a brown loam Ck-horizon below. No evidence of seasonal saturation (mottling or gleying). No groundwater was found.
- Lot 2: A yellowish brown loam A-horizon (Ap) to approximately 20 cm [8"] overlays a pale brown loam Bm-horizon to approximately 84 cm [33"] which transitions to a dark yellowish brown loam Bm-horizon to approximately 102 cm [40"] which transitions to a brown loam Ck-horizon below. No evidence of seasonal saturation (mottling or gleying) was observed. No groundwater was found.
- Lot 3: A dark yellowish brown clay loam A-horizon (Ap) to approximately 25 cm [10"] overlays a brown clay loam Bm-horizon to approximately 69 cm [27"] which transitions to a brown clay loam Bm-horizon to approximately 89 cm [35"] which transitions to a dark yellowish brown clay loam Ck-horizon below. No evidence of seasonal saturation (mottling or gleying) was observed. No groundwater was found.
- Lot 4: A dark yellowish brown clay loam A-horizon (Ap) to approximately 23 cm [9"] overlays a brown clay loam Bm-horizon to approximately 84 cm [33"] which transitions

North Side of Alberta Avenue, Hamlet of Chin (Blocks A, B & E, Plan 899 AA, NE25-9-19-4) 2023

PRIVATE SEWAGE TREATMENT SYSTEMS (PSTS) ASSESSMENT DOUGLAS J. BERGEN ASSOCIATES LTD.

- to a dark yellowish brown clay loam Ck-horizon below. No evidence of seasonal saturation (mottling or gleying) was observed. No groundwater was found.
- Lot 5: A brown loam A-horizon (Ap) to approximately 3 cm [13"] overlays a pale brown to brown loam Bm-horizon to approximately 97 cm [38"] which transitions to a brown clay loam Ck-horizon below. No evidence of seasonal saturation (mottling or gleying) was observed. No groundwater was found.
- Lot 6: A brown clay loam A-horizon (Ap) to approximately 18 cm [7"] overlays a brown to light yellowish brown clay loam Bm-horizon to approximately 114 cm [45"] which transitions to a dark grayish brown to dark yellowish brown clay loam Ck-horizon below. Evidence of seasonal saturation (mottling) was observed below 191 cm [75"]. No groundwater was found.
- Lot 7: A brown clay loam A-horizon (Ap) to approximately 23 cm [9"] overlays a brown to pale brown clay loam Bm-horizon to approximately 196 cm [77"] which transitions to a light olive brown coarse sandy loam Ck-horizon below. Evidence of seasonal saturation (mottling) was observed below 196 cm [77"]. No groundwater was found.
- Lot 8: A brown loam A-horizon (Ap) to approximately 25 cm [13"] overlays a light yellowish brown to a light olive brown sandy clay loam Bm-horizon to approximately 127 cm [50"] which transitions to a light olive brown and yellowish brown loam Ck-horizon below. No evidence of seasonal saturation (mottling or gleying) was observed. No groundwater was found.
- Lot 9: A brown loam A-horizon (Ap) to approximately 30 cm [12"] overlays a brown and light olive brown clay loam Bm-horizon to approximately 81 cm [32"] which transitions to a light olive brown and brown clay loam Ck-horizon below. No evidence of seasonal saturation (mottling or gleying) was observed. No groundwater was found.
- Lot 10: A brown loam A-horizon (Ap) to approximately 15 cm [6"] overlays a yellowish brown and brown clay loam Bm-horizon to approximately 84 cm [33"] which transitions to a yellowish brown and brown loam and clay loam Ck-horizon below. No evidence of seasonal saturation (mottling or gleying) was observed. No groundwater was found.
- Lot 11: A brown clay loam A-horizon (Ap) to approximately 15 cm [6"] overlays an olive brown and light yellowish brown clay loam Bm-horizon to approximately 109 cm [43"] which transitions to a dark yellowish brown and brown clay loam Ck-horizon below. Evidence of seasonal saturation (mottling) was observed below 193 cm [76"]. No groundwater was found.
- Lot 12: A brown clay loam A-horizon (Ap) to approximately 20 cm [8"] overlays a light yellowish brown and light olive brown clay loam Bm-horizon to approximately 109 cm [43"] which transitions to a dark yellowish brown clay loam Ck-horizon below. Evidence of seasonal saturation (mottling) was observed below 208 cm [82"]. No groundwater was found.
- School Lot: A brown clay loam A-horizon (Ap) to approximately 15 cm [6"] overlays a pale brown and brown clay loam Bm-horizon to approximately 132 cm [52"] which transitions to a dark brown clay loam Ck-horizon below. No evidence of seasonal saturation (mottling or gleying) was observed. No groundwater was found.

IV. ESTIMATE OF SYSTEM DAILY FLOWS

Houses are predicted to be at least four bedrooms and generally include additional fixtures that can increase peak daily flows.

CHIN ÁREA STRUCTURE PLAN
PAGE 6
NORTH SIDE OF ALBERTA ÁVENUE, HAMLET OF CHIN (BLOCKS A, B & E, PLAN 899 AA, NE25-9-19-4)
27 NOVEMBER

NORTH SIDE OF ALBERTA AVENUE, HAMLET OF CHIN (BLOCKS A, B & E, PLAN 899 AA, NE25-9-19-4)

PRIVATE SEWAGE TREATMENT SYSTEMS (PSTS) ASSESSMENT

DOUGLAS J. BERGEN ASSOCIATES LTD.

As such, a peak daily flow rate of 2300 L/day [500 gal/day] is used (a four-bedroom house with allowance for *some* extra fixture units). The installation of such fixtures as garbage grinders, large soaker tubs and other high-volume and/or high-strength effluent producing fixtures requires special consideration because:

- these increase the PSTS soil component size required and
- the possible lack of space for adequately sized soil treatment components and reserve field areas to accommodate such features.

Water treatment components (such as water softeners and iron filters) can generate large flows of clear water. When connected to private sewage systems, these large flows can cause treatment components to fail and become saturated. It is strongly recommended that backflush and overflow from water treatment components be directed elsewhere.

The school is predicted to be 35 students. As per the SOP 2021, a peak daily flow per student is 70 L/day/student [15 gal/day/student]. The total peak daily rate is 2450 L/day [525 gal/day].

Actual size of system components is the responsibility of the system installer and will be determined prior to obtaining permits based on the proposed house size and design.

V. INFILTRATION COMPONENT SIZING

Based on the site assessment, the following types of soil-based effluent treatment and dispersal systems are not appropriate for the proposed parcel:

- Lagoons due to limited distance to property boundaries,
- Open discharge due to limited distance to property boundaries and area density and
- LFH at-grade systems except in forested areas where LFH layers of 50 mm [2"] or deeper can be demonstrated.

Treatment fields receiving primary (Level 1) or secondary (Level 2) treated effluent or treatment mounds receiving primary (Level 1) or secondary (Level 2) treated effluent are suitable for the proposed lots. Suitability of any given proposed PSTS is subject to the design judgement of the installer and the standard of practice in effect at the time of installation. Soils can vary throughout a parcel and such variation can affect the suitability of land for PSTS.

For the purposes of this report, the infiltration component assumes the following:

- Pressure distributed treatment fields receiving primary treated (Level 1) effluent.
- The required vertical separation to a restricting condition for a treatment field is 1.5 m [5 ft] from trench bottom. Given the soil profile observed on these lots, this can be achieved.

Footprints for such systems are shown on Figure 4 and on Table 1. Footprints are approximate and will depend on dwelling size and type of PSTS ultimately chosen by the owner and installer based on detailed soil analysis at the time of the design, as well as other factors. Other designs and arrangements are possible for the proposed infiltration components. Decisions relating to a final design are the responsibility of the landowner, their system installer, and the safety codes officer (SCO) inspecting the installation.

CHIN AREA STRUCTURE PLAN
PAGE 7

NORTH SIDE OF ALBERTA AVENUE, HAMLET OF CHIN (BLOCKS A, B & E, PLAN 899 AA, NE25-9-19-4) 2023

27 November

PRIVATE SEWAGE TREATMENT SYSTEMS (PSTS) ASSESSMENT

DOUGLAS J. BERGEN ASSOCIATES LTD.

VI. SUSTAINABILITY OF PRIVATE SEWAGE

If installed by a qualified installer as recommended in this report, and properly operated and maintained, the proposed lots can support viable PSTSs for the long term.

VII. CONCLUSIONS

If installed and maintained using accepted best practices, there is more than adequate space on the proposed lots to install compliant and functioning PSTSs.

If you require anything further, please contact the undersigned.

Yours truly,

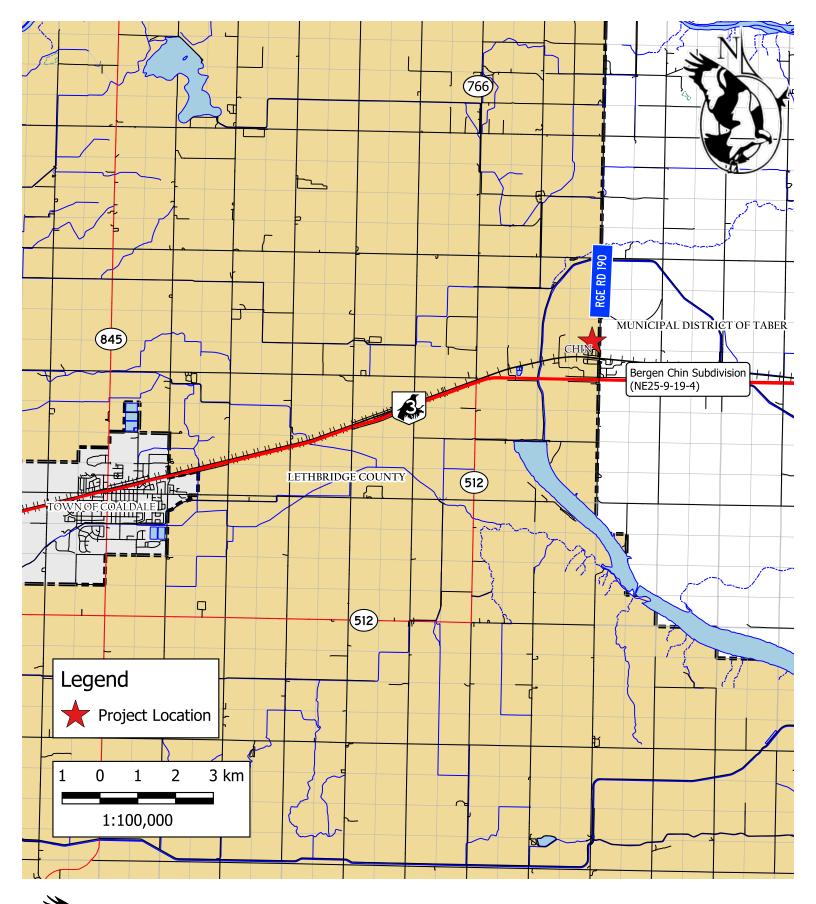
Responsible member for OSPREY ENGINEERING INC. APEGA Permit to Practice No. P10743

Michael A. Kitchen, P.Eng. Alberta Municipal Affairs, Certificate of Competency PS 8926, Private Sewage Installer; Group I President

MAK/

Encl.

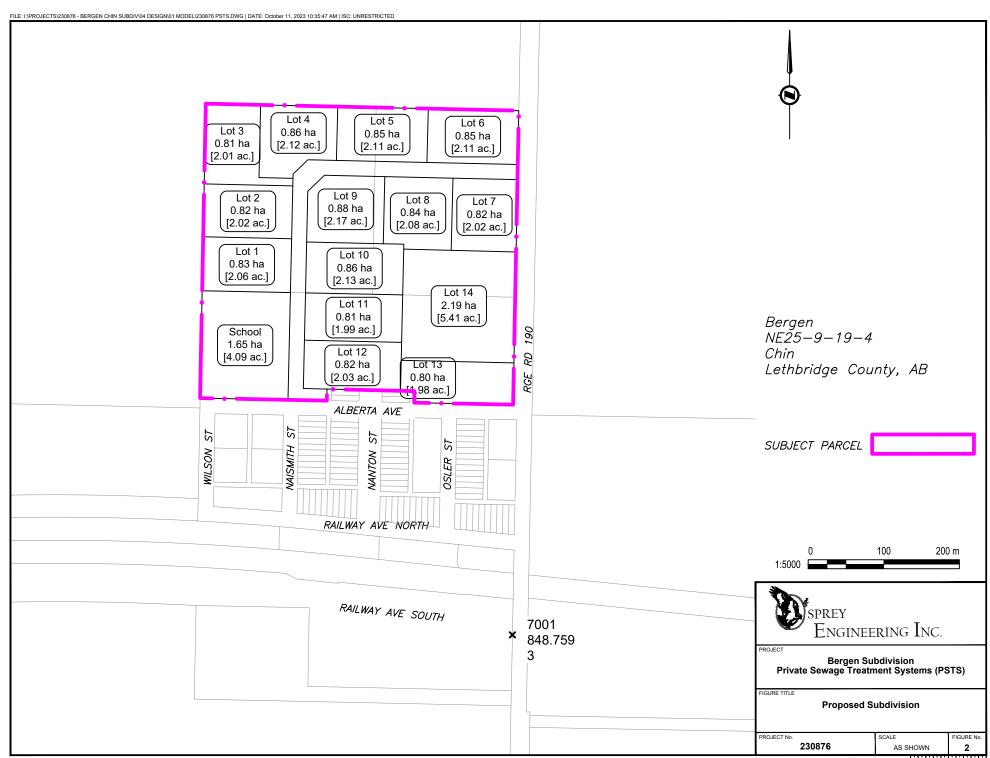
CC.

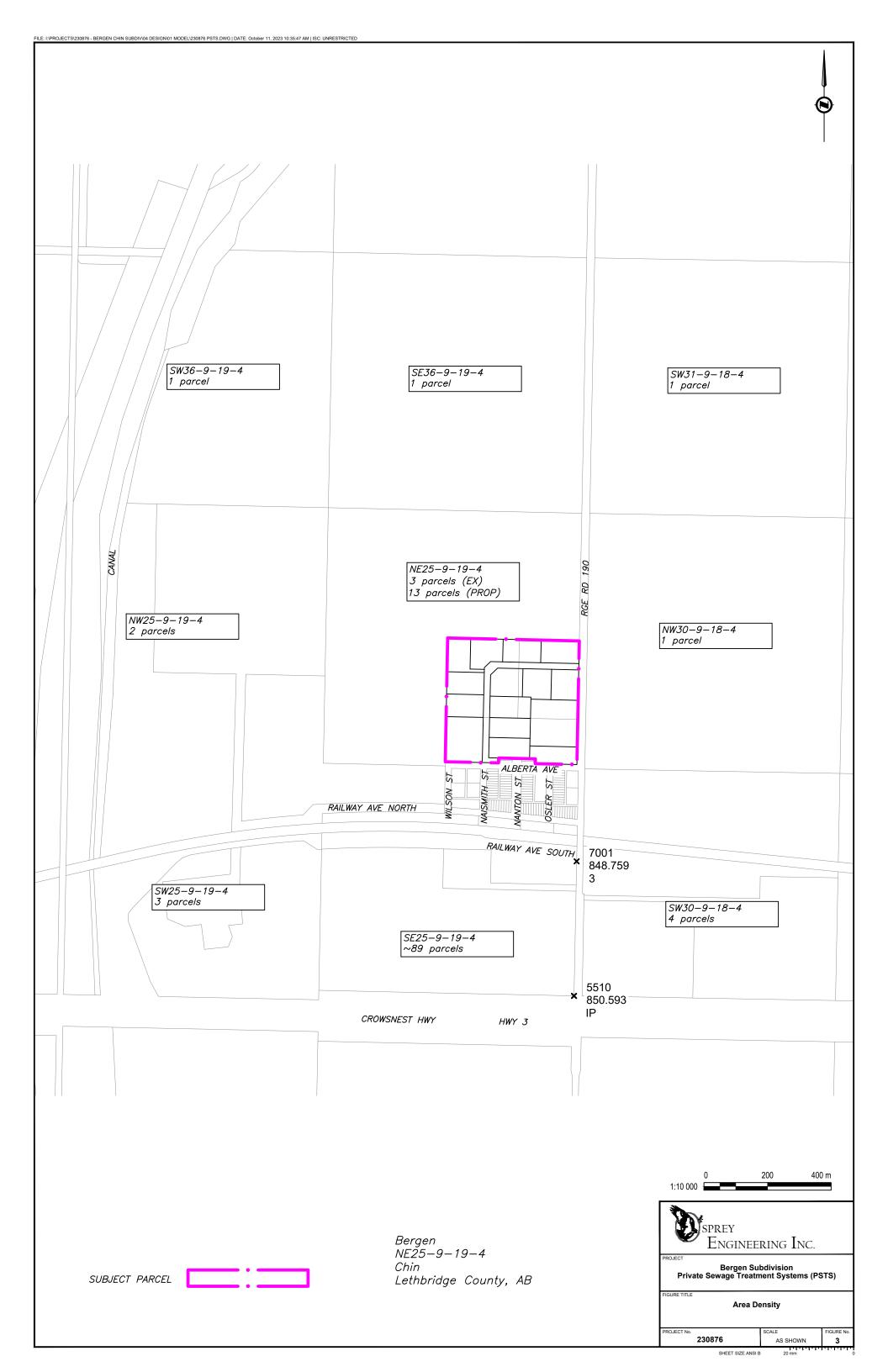


CHIN AREA STRUCTURE PLAN
PAGE 8
NORTH SIDE OF ALBERTA AVENUE, HAMLET OF CHIN (BLOCKS A, B & E, PLAN 899 AA, NE25-9-19-4)
27 NOVEMBER
2023
PRIVATE SEWAGE TREATMENT SYSTEMS (PSTS) ASSESSMENT
DOUGLAS J. BERGEN ASSOCIATES LTD.

FIGURES

The following figures are referenced in the report.





Bergen Chin Subdivision Private Sewage Treatment Systems (PSTS) Assessment

Figure 1 - Location

	Proposed Lot 1	Proposed Lot 2	Proposed Lot 3	Proposed Lot 4	Proposed Lot 5
					Moderate to good: clay loam, and
Гexture	Very: loam	Very: loam	Moderate to good: clay loam	Moderate to good: clay loam	loam
	Moderate to well: granular (grade 2)	Moderate: granular (grade 2)	Moderate: granular (grade 2)	Moderate: granular (grade 2)	Moderate: granular (grade 2)
Structure	structure	structure	structure	structure	structure
Hydraulic					
Capability of Soil					
(Drainage)	Very: well drained to >2.5 m	Very: well drained to >2.5 m	Very: well drained to >2.5 m	Very: well drained to >2.5 m	Very: well drained to >2.5 m
Depth of Suitable					
-	Very: suitable soil to >2.5 m	Very: suitable soil to >2.5 m	Very: suitable soil to >2.5 m	Very: suitable soil to >2.5 m	Very: suitable soil to >2.5 m
Depth to Water	Very: no evidence of water table or	Very: no evidence of water table or	Very: no evidence of water table or	Very: no evidence of water table or	Very: no evidence of water table or
Гable	saturated soils	saturated soils	saturated soils	saturated soils	saturated soils
Городгарһу	Very: very slight slope to flat	Very: very slight slope to flat	Very: very slight slope to flat	Very: very slight slope to flat	Very: very slight slope to flat
	Moderate: depression within parcel				
	could be subject for pooling water.	Very: moderate to good surface	Very: moderate to good surface	Very: moderate to good surface	Very: moderate to good surface
	Area not suitable for PSTS. See Figure	drainage. No surface water within	drainage. No surface water within	drainage. No surface water within	drainage. No surface water within
Flooding	4	parcel	parcel	parcel	parcel
<u> </u>	Moderate - surrounding <30 parcels	Moderate - surrounding <30 parcels	Moderate - surrounding <30 parcels	Moderate - surrounding <30 parcels	Moderate - surrounding <30 parcels
Density	per ¼ section	per ¼ section	per ¼ section	per ¼ section	per ¼ section
,	Very: more than one suitable site for	Very: more than one suitable site for a	Very: more than one suitable site for	Very: more than one suitable site for a	Very: more than one suitable site for
Encumbrances	a PSTS	PSTS	a PSTS	PSTS	a PSTS
Parcel Size	Moderate: sufficient parcel size	Moderate: sufficient parcel size	Moderate: sufficient parcel size	Moderate: sufficient parcel size	Moderate: sufficient parcel size
Surface Water	Very: none within parcel	Very: none within parcel	Very: none within parcel	Very: none within parcel	Very: none within parcel
Overall	Very	Very	Very	Very	Very
Recommended	Treatment field receiving primary	Treatment field receiving primary	Treatment field receiving primary	Treatment field receiving primary	Treatment field receiving primary
System Type	treated effluent	treated effluent	treated effluent	treated effluent	treated effluent
, , , , ,					
Test Pit	Lot 1 - TP	Lot 2 - TP	Lot 3 - TP	Lot 4 - TP	Lot 5 - TP
т 1.	1 (1 2)	1 (1 2)	Clay loam, granular (grade 2)		Clay loam, granular (grade 2)
Limiting soil type	Loam, granular (grade 2) structure	Loam, granular (grade 2) structure	structure		structure
Applicable	HLR: 22.0 L/m ² /day	HLR: 22.0 L/m ² /day	HLR: 13.2 L/m²/day	HLR: 13.2 L/m²/day	HLR: 13.2 L/m²/day
Loading Rates	[0.45 gal/ft²/day]	[0.45 gal/ft²/day]	[0.27 gal/ft²/day]	[0.27 gal/ft²/day]	[0.27 gal/ft²/day]
	LLD. NI/A and and state of the latest and the lates	TID N/A secretarity	LID. N/A	I I D. NI/A	LID N/A
	LLR: N/A, no restricting conditions	LLR: N/A, no restricting conditions	LLR: N/A, no restricting conditions	LLR: N/A, no restricting conditions	LLR: N/A, no restricting conditions
Approximate					
System footprint	31.7 m × 6.4 m [104.0 ft × 21.0 ft]	31.7 m × 6.4 m [104.0 ft × 21.0 ft]	39.6 m × 9.1 m [130.0 ft × 30.0 ft]	39.6 m × 9.1 m [130.0 ft × 30.0 ft]	39.6 m × 9.1 m [130.0 ft × 30.0 ft]

	Proposed Lot 6	Proposed Lot 7	Proposed Lot 8	Proposed Lot 9	Proposed Lot 10
		Moderate to good: sandy clay loam,	Moderate to good: sandy clay loam,		Moderate to good: clay loam, and
Texture	Moderate to good: clay loam	and clay loam	and loam	Moderate to good: clay loam	loam
	Moderate to well: granular (grade 2)	Moderate: granular (grade 2)			
Structure	structure	structure	Moderate: blocky (grade 2) structure	Moderate: blocky (grade 2) structure	Moderate: blocky (grade 2) structure
Hydraulic					
Capability of Soil	Moderate: well drained above	Moderate: well drained above 2.0			
(Drainage)	1.8 m	m	Very: well drained to >2.5 m	Very: well drained to >2.5 m	Very: well drained to >2.5 m
Depth of Suitable					
Soil	Moderate: suitable above 1.8 m	Moderate: suitable above 2.0 m	Very: suitable soil to >2.5 m	Very: suitable soil to >2.5 m	Very: suitable soil to >2.5 m
Depth to Water	Moderate: evidence of seasonally	Moderate: evidence of seasonally	Very: no evidence of water table or	Very: no evidence of water table or	Very: no evidence of water table or
Table	saturated soils below 1.8 m	saturated soils below 2.0 m	saturated soils	saturated soils	saturated soils
Topography	Very: very slight slope to flat	Very: very slight slope to flat	Very: very slight slope to flat	Very: very slight slope to flat	Very: very slight slope to flat
		Moderate: depression within parcel	Moderate: depression within parcel		Moderate: depression within parcel
	Very: moderate to good surface	could be subject for pooling water.	could be subject for pooling water.	Very: moderate to good surface	could be subject for pooling water.
	drainage. No surface water within	Area not suitable for PSTS. See Figure	Area not suitable for PSTS. See Figure	drainage. No surface water within	Area not suitable for PSTS. See Figure
Flooding	parcel	4	4	parcel	4
	Moderate - surrounding <30 parcels	Moderate - surrounding <30 parcels	Moderate - surrounding <30 parcels	Moderate - surrounding <30 parcels	Moderate - surrounding <30 parcels
Density	per ¼ section	per ¼ section	per ¼ section	per ¼ section	per ¼ section
	Very: more than one suitable site for	Very: more than one suitable site for a	Very: more than one suitable site for	Very: more than one suitable site for a	Very: more than one suitable site for
Encumbrances	a PSTS	PSTS	a PSTS	PSTS	a PSTS
Parcel Size	Moderate: sufficient parcel size	Moderate: sufficient parcel size	Moderate: sufficient parcel size	Moderate: sufficient parcel size	Moderate: sufficient parcel size
Surface Water	Very: none within parcel	Very: none within parcel	Very: none within parcel	Very: none within parcel	Very: none within parcel
Overall	Moderate to very	Moderate to very	Very	Very	Very
Recommended	Shallow treatment field receiving	Shallow treatment field receiving	Treatment field receiving primary	Treatment field receiving primary	Treatment field receiving primary
System Type	primary treated effluent	primary treated effluent	treated effluent	treated effluent	treated effluent
Test Pit	Lot 6 - TP	Lot 7 - TP	Lot 8 - TP	Lot 9 - TP	Lot 10 - TP
Limiting soil type	Clay loam, granular (grade 2)	Sandy clay loam, granular (grade 2)	Sandy clay loam, blocky (grade 2)	Clay loam, blocky (grade 2) structure	Clay loam blocky (grade 2) structure
Limiting son type	structure	structure	structure	Clay loani, blocky (grade 2) structure	Clay loani, blocky (grade 2) structure
Applicable	HLR: 13.2 L/m²/day	HLR: 13.2 L/m ² /day	HLR: 13.2 L/m²/day	HLR: 13.2 L/m²/day	HLR: 13.2 L/m²/day
Loading Rates	[0.27 gal/ft²/day]	[0.27 gal/ft²/day]	[0.27 gal/ft²/day]	[0.27 gal/ft²/day]	[0.27 gal/ft²/day]
	LLR: N/A, no restricting conditions	LLR: N/A, no restricting conditions	IID: N/A no rootricting conditions	IID: N/A no restricting conditions	LLR: N/A, no restricting conditions
	within < 60 inches	within < 60 inches	LLR: N/A, no restricting conditions	LLR: N/A, no restricting conditions	LLK. IV/A, no restricting conditions
Approximate					
Approximate System footprint	39.6 m × 9.1 m [130.0 ft × 30.0 ft]	39.6 m × 9.1 m [130.0 ft × 30.0 ft]	39.6 m × 9.1 m [130.0 ft × 30.0 ft]	39.6 m × 9.1 m [130.0 ft × 30.0 ft]	39.6 m × 9.1 m [130.0 ft × 30.0 ft]
System tootpillt					

	Proposed Lot 11	Proposed Lot 12	Proposed School Lot
Texture	Moderate: clay loam	Moderate: clay loam	Moderate to good: clay loam
	Moderate to well: granular (grade 2)	Moderate: granular (grade 2)	Moderate: granular (grade 2)
Structure	structure	structure	structure
Hydraulic			
,	Moderate: well drained above	Moderate: well drained above 2.0	
(Drainage)	2.0 m	m	Very: well drained to >2.5 m
Depth of Suitable	Moderate: suitable soil above	Moderate: suitable soil above	
Soil	2.0 m	2.0 m	Very: suitable soil to >2.5 m
Depth to Water	Moderate - evidence of saturated	Moderate - evidence of saturated soils	Very: no evidence of water table or
Table	soils below 2.0 m	below 2.0 m	saturated soils
Topography	Very: very slight slope to flat	Very: very slight slope to flat	Very: very slight slope to flat
			Moderate: depression within parcel
	Very: moderate to good surface	Very: moderate to good surface	could be subject for pooling water.
	drainage. No surface water within	drainage. No surface water within	Area not suitable for PSTS. See Figure
Flooding	parcel	parcel	4
	Moderate - surrounding <30 parcels	Moderate - surrounding <30 parcels	Moderate - surrounding <30 parcels
Density	per ¼ section	per ¼ section	per ¼ section
	Very: more than one suitable site for	Very: more than one suitable site for a	Very: more than one suitable site for
Encumbrances	a PSTS	PSTS	a PSTS
Parcel Size	Moderate: sufficient parcel size	Moderate: sufficient parcel size	Moderate: sufficient parcel size
Surface Water	Very: none within parcel	Very: none within parcel	Very: none within parcel
Overall	Moderate	Moderate	Very
Recommended	Shallow treatment field receiving	Shallow treatment field receiving	Treatment field receiving primary
System Type	primary treated effluent	primary treated effluent	treated effluent
Test Pit	Lot 11 - TP	Lot 12 - TP	School - TP
Limiting soil type	Clay loam, granular (grade 2)	Clay loam, granular (grade 2)	Clay loam, granular (grade 2)
Limiting son type	structure	structure	structure
Applicable	HLR: 13.2 L/m ² /day	HLR: 13.2 L/m²/day	HLR: 13.2 L/m²/day
Loading Rates	[0.27 gal/ft²/day]	[0.27 gal/ft²/day]	[0.27 gal/ft²/day]
	LLR: N/A, no restricting conditions	LLR: N/A, no restricting conditions	LLR: N/A, no restricting conditions
	within <60"	within <60"	LEET 1 1/11, 110 restricting conditions
Approximate	22.6 21 5122.25 22.253		
System footprint	39.6 m × 9.1 m [130.0 ft × 30.0 ft]	39.6 m × 9.1 m [130.0 ft × 30.0 ft]	33.5 m × 11.9 m [110.0 ft × 39.0 ft]
, 1			

CHIN AREA STRUCTURE PLAN
PAGE 16
NORTH SIDE OF ALBERTA AVENUE, HAMLET OF CHIN (BLOCKS A, B & E, PLAN 899 AA, NE25-9-19-4)
27 NOVEMBER
2023
PRIVATE SEWAGE TREATMENT SYSTEMS (PSTS) ASSESSMENT

Douglas J. Bergen Associates Ltd.

APPENDIX A – SOIL PROFILES

The following pages contain the soil profile from the site assessment conducted by Osprey Engineering Inc. on 28 August 2023. Samples of soil from the most-limiting soil horizons were taken from the test pits and submitted to Down to Earth Labs of Lethbridge. Laboratory soil texture results are included. Based on the observed conditions, conclusions were made as to allowable soil loading rates and sizes of dispersal areas needed for the treatment fields.

230876 - Be	ergen Chin S	Subdivision									28-Aug-23
			Legal Land	d Location				Test Pit (GPS Coordii	nates (UTM	Zone 12N)
LSD-1/4	Sec	Twp	0	Mer	Lot	Block	Plan		ting		thing
NE	25	9	19	4				395699	m	5513599	m
Vacatatian	matasi	Crans				Overall site s	slope %	1%			
Vegetation	Hotes.	Crops				Slope position	on of test pit:	mid		Elevation	847 m
Test h	ole No.	Soil Su	bgroup	Parent Material		Drai	nage	Depth of Lab sample #1		Depth of Lab sample #	
Lo	ot l	O.B	SLC	Glaci	al Till	Go	ood	20	in.	60	in.
Horizon	Depth (in.)	Texture	Lab or HT	Colour	Gleying	Mottling	Structure	Grade	Consistency	Moisture	% Coarse Fragments
Ар	0-9	L	HT	10YR 4/3	none	none	Granular	2	Friable	Dry	0%
Bm	9-51	L	Lab	10YR 6/3	none	none	Granular	2	Friable	Dry	0%
Ck	51-100	L	Lab	10YR 5/3	none	none	Granular	2	Loose	Dry	0%
Depth to Groundwa	ter	none found			Restricting Characteri	g Soil Layer istic		none found			
Depth to Se Saturated S		none found			Depth to re	estrictive Soi	l Layer	none found			
Site Topog	raphy	hummocky			Depth to E Limiting D	Iighly Perme esign	able Layer	none found	l		
	haracteristic uent loading	es applied to	system	Loam, gran	ular (grade	2) structure					
Weather C	Veather Condition notes:				, dry						
	omments: such as root depth and abundanc other pertinent observations:				No roots below 51 inches. Weak to strong effervescence throughout. Minor white precibelow 51 inches.					precipitates	

230876 - Be	ergen Chin S	Subdivision									28-Aug-23
			Legal Land	d Location				Test Pit (GPS Coordii	nates (UTM Zone 12N)	
LSD-1/4	Sec	Twp	Rge	Mer	Lot	Block	Plan		ting		thing
NE	25	9	19	4				395706	m	5513664	m
Vegetation	notes:	Crops				Overall site s	*	1%			
regetation	110000.	Сторо				Slope positio	n of test pit:	mid		Elevation	847 m
	ole No.	Soil Su			Material		nage		ıb sample #1		ab sample #2
Lo	t 2	O.B	SLC	Glaci	al Till	Go	ood	25	in.	45	in.
Horizon	Depth (in.)	Texture	Lab or HT	Colour	Gleying	Mottling	Structure	Grade	Consistency	Moisture	% Coarse Fragments
Ap	0-8	L	HT	10YR 5/4	none	none	Granular	2	Friable	Dry	0%
Bm	8-33	L	Lab	10YR 6/3	none	none	Blocky	2	Friable	Dry	3%
Bm	33-40	L	Lab	10YR 4/4	none	none	Granular	2	Friable Friable	Dry	1%
Ck	40-95	L	HT	10YR 4/3	none	none	Granular	2	Friable	Dry	1%
Depth to Groundwa	ter	none found			Restricting Characteri			none found	l		
Depth to Se Saturated S	,	none found			Depth to re	estrictive Soi	l Layer	none found	Į.		
Site Topog	raphy	hummocky			Depth to H Limiting D	lighly Perme esign	able Layer	none found	l		
	naracteristic Ient loading	s applied to	system	Loam, gran	ular (grade	2) structure					
Weather C	Veather Condition notes:				, dry						
	omments: such as root depth and abundance other pertinent observations:				No roots below 40 inches. Strong effervescence below 8 inches. Minor white precipitates 8 inches to 40 inches. Minor orange precipitates below 33 inches. Coarse fragments are < 1 to 2 inches, sub-rounded.						

230876 - Be	ergen Chin S	Subdivision									28-Aug-23
			Legal Land	d Location				Test Pit (GPS Coordin	nates (UTM	Zone 12N)
LSD-1/4	Sec	Twp	Rge	Mer	Lot	Block	Plan		ting		thing
NE	25	9	19	4				395685	m	5513760	m
Vegetation	notes:	Crops				Overall site s	lope %	1%			
vegetation	Hotes.	Сторѕ				Slope position	n of test pit:	mid		Elevation	848 m
Test h	ole No.	Soil Sul	ogroup		Material	Drai	nage	Depth of La	ıb sample #1	Depth of La	ab sample #2
Lo	ot 3	O.B	LC	Glaci	al Till	Go	ood	5	in.	40	in.
Horizon	Depth (in.)	Texture	Lab or HT	Colour	Gleying	Mottling	Structure	Grade	Consistency	Moisture	% Coarse Fragments
Ap	0-10	CL	Lab	10YR 4/4	none	none	Blocky	2	Friable	Dry	0%
Bm	10-27	CL	HT	10YR 5/3	none	none	Granular	2	Friable	Dry	0%
Bm	27-35	CL	Lab	10YR 5/3	none	none	Granular	2	Friable	Dry	15%
Ck	35-100	CL	HT	10YR 4/4	none	none	Granular	2	Friable	Dry	2%
Depth to Groundwa	ter	none found			Restricting Characteri	g Soil Layer stic		none found			
Depth to Se Saturated S	•	none found			Depth to re	estrictive Soi	l Layer	none found	l		
Site Topog	raphy	hummocky			Depth to H Limiting D	Iighly Perme esign	able Layer	none found			
	naracteristic ient loading	s applied to	system	Clay loam,	granular (g	rade 2) struc	ture				
Weather C	Veather Condition notes:				, dry						
	omments: such as root depth and abundance other pertinent observations:				o 27 inches a	nes. Strong e and 35 inche pelow 45 inc	s to 100 inch	es. Minor o	ange precip	itates below	

230876 - Be	ergen Chin S	Subdivision									28-Aug-23
			Legal Land	d Location				Test Pit (GPS Coordin	nates (UTM	Zone 12N)
LSD-1/4	Sec	Twp	Rge	Mer	Lot	Block	Plan		ting		thing
NE	25	9	19	4				395764	m	5513785	m
Vegetation	notes:	Crops				Overall site s	lope %	1%			
vegetation	notes.	Сторз				Slope position of test pit:		mid		Elevation	848 m
Test h	ole No.	Soil Sul	ogroup		Material	Drai	nage	Depth of La	ab sample #1	Depth of La	ab sample #2
Lo	ot 4	O.B	O.BLC		al Till	Go	ood	20	in.	40	in.
	Depth										% Coarse
Horizon	(in.)	Texture	Lab or HT	Colour	Gleying	Mottling	Structure	Grade	Consistency	Moisture	Fragments
Ар	0-9	CL	HT	10YR 4/4	none	none	Blocky	2	Friable	Dry	0%
Bm	9-26	CL	Lab	10YR 5/3	none	none	Granular	2	Friable	Dry	0%
Bm	26-33	CL	HT	10YR 5/3	none	none	Granular	2	Friable	Dry	15%
Ck	33-52	CL	Lab	10YR 4/4	none	none	Granular	2	Friable	Dry	2%
Ck	52-100	CL	HT	10YR 4/4	none	none	Granular	2	Friable	Dry	0%
Depth to Groundwa	ter	none found			Restricting Characteri	g Soil Layer stic		none found	l		
Depth to Se Saturated S		none found			Depth to re	estrictive Soi	l Layer	none found	l		
Site Topog	raphy	hummocky			Depth to H Limiting D	lighly Perme esign	able Layer	none found	l		
,	naracteristic ıent loading	es applied to	system	Clay loam,	granular (g.	rade 2) struc	ture				
Weather C	ondition no	ites:		Hot, sunny	, dry						
	omments: such as root depth and abundance other pertinent observations:				26 inches a	nes. Strong el nd 52 inches ragments fro	to 100 inche	es. Minor or	ange precipi	tates from 2	6 inches to

230876 - Be	ergen Chin S	Subdivision									28-Aug-23
			Legal Land	d Location				Test Pit (GPS Coordin	nates (UTM	Zone 12N)
LSD-1/4	Sec	Twp	Rge	Mer	Lot	Block	Plan		ting		thing
NE	25	9	19	4				395886	m	5513782	m
Vegetation	notes	Crops				Overall site s		1%			
vegetation	noces.	Сторз				Slope position	n of test pit:	mid		Elevation	848 m
Test h	ole No.	Soil Sul	ogroup		Material	Drai	nage	Depth of La	ab sample #1	Depth of La	ab sample #2
Lo	ot 5	O.BLC		Glaci	al Till	Go	ood	25	in.	60	in.
	Depth										% Coarse
Horizon	(in.)	Texture	Lab or HT	Colour	Gleying	Mottling	Structure	Grade	Consistency	Moisture	Fragments
Ар	0-13	L	HT	10YR 5/3	none	none	Blocky	2	Friable	Dry	0%
Bm	13-32	L	Lab	10YR 6/3	none	none	Blocky	2	Friable	Dry	0%
Bm	32-38	L	HT	10YR 4/3	none	none	Granular	2	Friable	Dry	15%
Ck	38-52	CL	HT	10YR 4/3	none	none	Granular	2	Friable	Dry	2%
Ck	52-100	CL	Lab	10YR 5/3	none	none	Granular	2	Loose	Dry	0%
Depth to Groundwa	ter	none found			Restricting Characteri	g Soil Layer stic		none found	l		
Depth to So Saturated S		none found			Depth to re	estrictive Soi	l Layer	none found			
Site Topog	raphy	hummocky			Depth to H Limiting D	Iighly Perme esign	able Layer	none found	l		
,	naracteristic ıent loading	es applied to	system	Clay loam,	granular (gı	rade 2) struc	ture				
Weather C	Condition no	tes:		Hot, sunny	, dry						
	omments: such as root depth and abundance other pertinent observations:				No roots below 33 inches. Strong effervescence below 9 inches. Minor white precipitates f						6 inches to

230876 - Be	ergen Chin S	Subdivision									28-Aug-23
LSD-1/4	Sec	Twp	Legal Land Rge	d Location Mer	Lot	Block	Plan		GPS Coordin	nates (UTM Nor	Zone 12N) thing
NE	25	9						396002		5513777	
Vegetation	notes:	Crops				Overall site s Slope position	lope % n of test pit:	1% mid		Elevation	847 m
	ole No. ot 6		8 1		Material al Till		nage ood	-	ab sample #1 in.		ab sample #2 in.
Horizon	Depth (in.)	Texture	Lab or HT		Gleying	Mottling	Structure	Grade	Consistency	Moisture	% Coarse Fragments
Ap Bm	0-7 7-31	CL CL	Lab HT	10YR 4/3 2.5Y 6/3	none	none	Blocky Blocky	2 2	Friable Friable	Dry Dry	0% 0%
Bm	31-45	CL	Lab	10YR 4/3	none none	none none	Blocky	2	Friable	Dry	5%
Ck	45-75	CL	HT	10YR 4/2 10YR 4/4 &x	none	none few, fine,	Blocky	2	Friable	Dry	1%
Ck	75-100	CL	HT	10YR 5/8	none	faint	Blocky	2	Loose	Dry	0%
Depth to Groundwa	ter	none found			Restricting Characteris			Clay loam, blocky (grafine, faint mottles.		de 2) structı	ıre. Few,
Depth to Se Saturated S	,	75 inches			1	estrictive Soil Layer		75 inches			
Site Topog	raphy	hummocky			Depth to H Limiting D	lighly Perme esign	able Layer	none found	l		
	naracteristic ient loading	es applied to	system	Clay loam,	granular (gı	rade 2) struc	ture				
Weather C	ondition no	ites:		Hot, sunny	, dry						
	Comments: such as root depth and abundance r other pertinent observations:				No roots below 45 inches. Strong effervescence below 7 inches. Minor white precipitates from 7 inches to 75 inches. Minor orange precipitates from 31 inches to 75 inches. Coarse fragment are 1 inch to 2 inches, sub-rounded. Can be a treatment field if lateral depth is 12 inches.						

230876 - Be	ergen Chin S	Subdivision									28-Aug-23
			Legal Lan	d Location				Test Pit (GPS Coordin	nates (UTM	Zone 12N)
LSD-1/4	Sec	Twp	Rge	Mer	Lot	Block	Plan		ting		thing
NE	25	9	19	4				396024	m	5513668	m
Vegetation	notes:	Crops				Overall site s	lope %	1%			
vegetation	notes.	Сторз				Slope position of test pit:		mid		Elevation	847 m
Test h	ole No.	Soil Su	ogroup	Parent	Material	Drainage		Depth of La	ab sample #1	Depth of La	ab sample #2
Lo	ot 7	O.B	LC	Glaci	al Till	Go	ood	15	in.	30	in.
Horizon	Depth (in.)	Texture	Lab or HT	Colour	Gleying	Mottling	Structure	Grade	Consistency	Moisture	% Coarse Fragments
Ap	0-9	CL	Lab	10YR 5/3	none	none	Blocky	3	Friable	Dry	0%
Bm	9-25	CL	HT	10YR 6/3	none	none	Blocky	2	Friable	Dry	0%
Bm	25-77	SCL	Lab	10YR 5/3	none	none	Granular	2 Friable Dry (
Ck	77-90	COSL	HT	2.5Y 5/4 &c 10YR 5/8	none	few, fine, faint	Granular	2	Loose	Dry	25%
Depth to Groundwa		none found			Restricting Characteri	g Soil Layer stic			dy loam, gra Few, fine, fai	ınular (grade int mottles.	2)
Depth to Se Saturated S		77 inches			Depth to re	estrictive Soi	l Layer	77 inches			
Site Topog	raphy	hummocky			Depth to H Limiting D	lighly Perme esign	able Layer	none found	l		
	naracteristic ıent loading	es applied to	system	Clay loam,	blocky (gra	de 2) structı	ıre				
Weather C	ondition no	otes:		Hot, sunny	, dry						
	omments: such as root depth and abundance other pertinent observations:				Very few roots below 25 inches. No roots below 77 inches. Weak to strong effervescence inches to 77 inches. Minor white precipitates from 9 inches to 25 inches. Coarse fragment 1 inch to 4 inches, sub-rounded. Can be a treatment field if lateral depth is 12 inches.						

230876 - Be	ergen Chin S	Subdivision									28-Aug-23
			Legal Land	Location				Test Pit (GPS Coordin	nates (UTM	Zone 12N)
LSD-1/4	Sec	Twp	Rge	Mer	Lot	Block	Plan		ting		thing
NE	25	9	19	4				395932	m	5513664	m
Vegetation	notes:	Crops				Overall site slope % Slope position of test pit:		1%		Elevation	847 m
- T	1 27	0.410.1			1	1 1	1		1 1 "		·
	ole No.	Soil Sul			Material		nage	1	ab sample #1	_	ab sample #2
Lo	ot 8	O.B	LC	Glaci	al Till	(7(ood	20	in.	55	in.
Horizon	Depth (in.)	Texture	Lab or HT	Colour	Gleying	Mottling	Structure	Grade	Consistency	Moisture	% Coarse Fragments
Ар	0-13	L	HT	10YR 4/3	none	none	Granular	2	Friable	Dry	0%
Bm	13-26	SCL	Lab	2.5Y 6/3	none	none	Blocky	2	Friable	Dry	0%
Bm	26-50	SCL	HT	2.5Y 5/4	none	none	Blocky	2	Friable	Dry	0%
Ck	50-61	L	Lab	10YR 5/4	none	none	Granular	2	Friable	Dry	0%
Ck	61-105	L	HT	2.5Y 5/4	none	none	Granular	2	Friable	Dry	5%
Depth to Groundwa	ter	none found			Restricting Characteri	g Soil Layer istic		none found	l		
Depth to Se Saturated S		none found			Depth to re	estrictive Soi	l Layer	none found	l		
Site Topog	raphy	hummocky			Depth to H Limiting D	Iighly Perme esign	able Layer	none found	1		
,	naracteristic ient loading	es applied to	system	Sandy clay	loam, block	y (grade 2) s	structure				
Weather C	Veather Condition notes:				, dry						
	Comments: such as root depth and abundance rother pertinent observations:					es. Weak to ches. Minor ounded.	_		_	-	

230876 - Be	ergen Chin S	Subdivision									28-Aug-23
			Legal Land	d Location				Test Pit (GPS Coordii	nates (UTM	Zone 12N)
LSD-1/4	Sec	Twp	Rge	Mer	Lot	Block	Plan		sting		thing
NE	25	9	19	4				395835	m	5513668	m
Vegetation	matasi	Crans				Overall site s	lope %	1%			
Vegetation	notes.	Crops				Slope position of test pit:		mid		Elevation	848 m
Test h	ole No.	Soil Su	ogroup	Parent	Material	Drainage		Depth of La	ab sample #1	Depth of La	ab sample #2
Lo	ot 9	O.B		Glacial Till			ood	15	in.	65	in.
	Depth										% Coarse
Horizon	(in.)	Texture	Lab or HT	Colour	Gleying	Mottling	Structure	Grade	Consistency	Moisture	Fragments
Ap	0-12	L	HT	10YR 4/3	none	none	Granular	3	Friable	Dry	0%
Bm	12-21	CL	Lab	10YR 4/3	none	none	Blocky	3	Friable	Dry	0%
Bm	21-32	CL	HT	2.5Y 5/4	none	none	Granular	2	Friable	Dry	0%
Ck	32-45	CL	HT	2.5Y 5/4	none	none	Granular	2	Friable	Dry	0%
Ck	45-63	CL	HT	10YR 5/3	none	none	Granular	2	Loose	Dry	0%
Ck	63-105	CL	Lab	2.5Y 4/3	none	none	Granular	2	Loose	Dry	3%
Depth to		none found		Restricting Soil Layer				nana faunc	1		
Groundwa	ter	none round		Characteristic				none found			
Depth to Se Saturated S	,	none found			Depth to re	estrictive Soi	l Layer	none found	l		
Site Topog	raphy	hummocky			Depth to E Limiting D	Iighly Perme esign	able Layer	none found	l		
	naracteristic ient loading	es applied to	system	Clay loam,	blocky (gra	de 2) structı	ıre				
	ondition no			Hot, sunny	, dry						
	omments: such as root depth and abundance other pertinent observations:				Few roots below 45 inches. No roots below 63 inches. Weak to strong effervescence throughout. Minor white precipitates from 21 inches to 45 inches. Coarse fragments are 1 to 2 inches, sub-rounded.						

230876 - Bergen Chin Subdivision											28-Aug-23
Legal Land Location Test Pit GPS Coordin										nates (UTM	Zone 12N)
LSD-1/4	Sec	Twp	Rge	Mer	Lot	Block	Plan	Easting		Northing	
NE	25	9	19	4				395841	m	5513589 m	
V C			Overall site slope %			1%					
Vegetation notes:		Crops				Slope position	n of test pit:	mid		Elevation	847 m
Test h	ole No.	Soil Subgroup		Parent Material		Drainage		Depth of La	ab sample #1	Depth of Lab sample #2	
Lo	t 10	O.BLC		Glacial Till		Good		30 in.		50 in.	
	Depth										% Coarse
Horizon	(in.)	Texture	Lab or HT	Colour	Gleying	Mottling	Structure	Grade	Consistency	Moisture	Fragments
Ap	0-6	L	HT	10YR 4/3	none	none	Granular	3	Friable	Dry	0%
Bm	6-19	CL	HT	10YR 5/4	none	none	Blocky	3	Friable	Dry	0%
Bm	19-33	CL	Lab	10YR 4/3	none	none	Blocky	2	Friable	Dry	0%
Ck	33-45	L	HT	10YR 5/4	none	none	Blocky	2	Friable	Dry	0%
Ck	45-61	L	Lab	10YR 5/3	none	none	Granular	2	Friable	Dry	0%
Ck	61-110	CL	HT	10YR 4/3	none	none	Granular	2	Loose	Dry	3%
Depth to		none found			Restricting	g Soil Layer		none found	1		
Groundwa	ter	Home found		Characteristic				none round			
Depth to Se Saturated S	,	none found			Depth to restrictive Soil Layer			none found			
Site Topography hummocky				Depth to Highly Permeable Layer Limiting Design				none found			
Key Soil Characteristics applied to system design effluent loading				Clay loam, blocky (grade 2) structure							
				Hot, sunny, dry							
Comments: such as root depth and abundance or other pertinent observations:				No roots below 45 inches. Moderate to strong effervescence below 19 inches. Minor white precipitates below 33 inches. Minor orange precipitates below 61 inches. Coarse fragments are 1 inch to 2 inches, sub-rounded.							

230876 - Be	ergen Chin S	Subdivision									28-Aug-23		
LSD-1/4	Sec	Twp	Legal Land Rge	d Location Mer Lot Block Plan			Plan	Test Pit GPS Coordi Easting		nates (UTM Zone 12N) Northing			
NE	25			4				395841		5513526 m			
Vegetation notes: Crops			Overall site slope %				1%		Elevation 847 m				
Test hole No.		Soil Subgroup		Parent Material		Slope position of test pit: Drainage		Depth of Lab sample #1		Depth of Lab sample #2			
Lo	t ll	O.BLC		Glacial Till		Good		5 in.		50 in.			
Horizon	Depth (in.)	Texture	Lab or HT	Colour	Gleying	Mottling	Structure	Grade	Consistency	Moisture	% Coarse Fragments		
Ap	0-6	CL	Lab	10YR 4/3	none	none	Granular	3	Friable	Dry	0%		
Bm	6-21	CL	HT	2.5Y 6/3	none	none	Blocky	3	Friable	Dry	0%		
Bm	21-43	CL	HT	2.5Y 4/3	none	none	Granular	2	Friable	Dry	5%		
Ck Ck	43-76 76-105	CL CL	Lab HT	10YR 4/4 10YR 4/3 & 10YR 5/8	none	few, fine, distinct	Granular Granular	2	Loose	Dry Dry	1%		
Depth to Groundwa	Depth to Groundwater none found			Restricting Soil Layer Characteristic				Clay loam, granular (grade 2) structure. Few, fine, distinct mottles.					
Depth to Se Saturated S	,	76 inches			Depth to re	estrictive Soi	l Layer	76 inches					
Site Topog	Site Topography hummocky				Depth to H Limiting D	Iighly Perme esign	able Layer	none found					
	naracteristic Ient loading	es applied to	system	Clay loam, granular (grade 2) structure									
Weather Condition notes: Ho					Hot, sunny, dry								
	: such as roor	ot depth and ervations:	abundance	Few roots below 43 inches. No roots below 76 inches. Weak to strong effervescence throughout. Minor white precipitates from 21 inches to 76 inches. Coarse fragments are 1 inch to 3 inches, sub-rounded. Can be a treatment field if lateral depth is 12 inches.									

230876 - Be	ergen Chin S	Subdivision									28-Aug-23	
LSD-1/4 NE	Sec 25	Twp	Rge	d Location Mer 4	Lot	Block	Plan		sting	Northing 5513458 m		
Vegetation notes: Crops				Overall site slope % Slope position of test pit:		l% mid		Elevation 846 1				
Test hole No. Lot 12		Soil Subgroup O.BLC		Parent Material Glacial Till		Drainage Good		Depth of Lab sample #1 15 in.		Depth of Lab sample #2 35 in.		
Horizon	Depth (in.)	Texture	Lab or HT	Colour	Gleying	Mottling	Structure	Grade	Consistency	Moisture	% Coarse Fragments	
Ap Bm Ck Ck Ck Depth to Groundwa		CL CL CL CL none found	HT Lab Lab HT	10YR 4/3 2.5Y 6/3 2.5Y 5/4 10YR 3/4 10YR 4/4 & 10YR 5/8	none none none none Restricting	none none none none few, medium, distinct g Soil Layer stic	Granular Blocky Granular Granular		Friable Friable Friable Loose Loose granular (gristinct mott	Dry Dry Dry Dry Dry Structure (1988)	0% 0% 5% 1% 0% eture. Few,	
Depth to Seasonally Saturated Soil Site Topography hummocky				1	estrictive Soi Iighly Perme esign		82 inches none found					
Key Soil Characteristics applied to system design effluent loading					Clay loam, granular (grade 2) structure							
Comments	ondition no	ot depth and	abundance	Hot, sunny, dry Few roots below 43 inches. No roots below 82 inches. Weak to strong effervescence throughout. Minor white precipitates from 22 inches to 82 inches. Coarse fragments are 1 inch to 3 inches, sub-rounded. Can be a treatment field if lateral depth is 12 inches.								

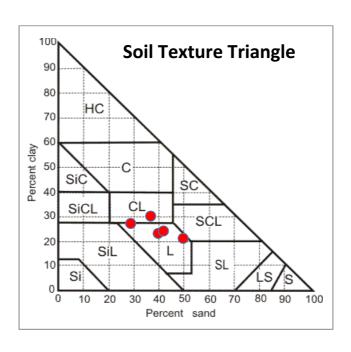
230876 - Bergen Chin Subdivision											28-Aug-23	
Legal Land Location Test Pit GPS Coord										inates (UTM Zone 12N)		
LSD-1/4	Sec	Twp	0	Mer	Lot	Block	Plan	Easting		Northing		
NE	25	9	19	4				395699	m	5513495 m		
Vegetation notes: Crops			Overall site slope %			lope %	1%					
vegetation	notes.	Crops			Slope position of test pit:			mid		Elevation	847 m	
Test h	ole No.	Soil Sul	ogroup	Parent l	Material	Drainage		Depth of Lab sample #1		Depth of Lab sample #2		
SCHC	OOL TP	O.B		Glacial Till		Good		25 in.		55 in.		
	Depth										% Coarse	
Horizon	(in.)	Texture	Lab or HT	Colour	Gleying	Mottling	Structure	Grade	Consistency	Moisture	Fragments	
Ap	0-6	CL	HT	10YR 4/3	none	none	Granular	2	Friable	Dry	0%	
Bm	6-20	CL	HT	10YR 6/3	none	none	Blocky	2	Friable	Dry	3%	
Bm	20-52	CL	Lab	10YR 4/3	none	none	Granular	2	Friable	Dry	1%	
Ck	52-100	CL	Lab	10YR 3/3	none	none	Granular	2	Friable	Dry	0%	
Depth to Groundwa	Depth to Groundwater none		none found			Restricting Soil Layer Characteristic			none found			
Depth to Seasonally Saturated Soil none found				Depth to re	estrictive Soi	l Layer	none found					
Site Topog	Site Topography hummocky				Depth to H Limiting D	lighly Perme esign	able Layer	none found				
Key Soil Cl design efflu	Clay loam, granular (grade 2) structure											
Weather Condition notes:				Hot, sunny, dry								
Comments: such as root depth and abundance or other pertinent observations:				No roots below 52 inches. Weak to strong effervescence throughout. Minor white precipitates below 6 inches. Coarse fragments are 1 inch to 4 inches, sub-rounded.								

Down To Earth Labs Inc.

The Science of Higher Yields

Osprey Engineering Inc Report #: 159426 Project :

Report Date: 2023-09-05 Bergen


Received: 2023-08-31

Completed: 2023-09-05 Test Done: ST PO:

3510 6th Ave North Lethbridge, AB T1H 5C3 403-328-1133

www.downtoearthlabs.com info@downtoearthlabs.com

	Sa	mple ID:	230831K014	230831K015	230831K016	230831K017	230831K018
	Cust. Sa	mple ID:	Lot 1- S1	Lot 1- S2	Lot 2- S1	Lot 2- S2	Lot 3- S1
	Analyte	Units	20	60	25	45	5
	Sand	%	39.9	49.9	28.9	42.0	36.9
	Silt	%	37.2	29.2	44.2	34.1	33.2
	Clay	%	22.9	20.9	26.9	23.9	29.9
Soi	il Texture	-	Loam	Loam	Loam	Loam	Clay Loam

The Science of Higher Yields

Osprey Engineering Inc

Report #: 159426

Report Date: 2023-09-05

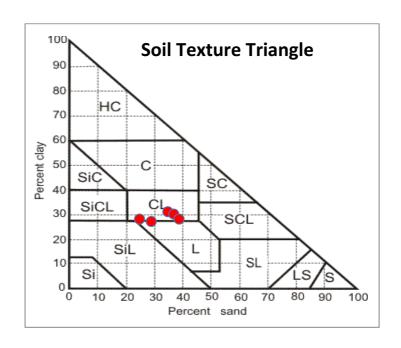
Received: 2023-08-31

Received: 2023-08-31

Received: 2023-08-31

Received: 2023-08-31

Received: 2023-08-31


Received: 2023-08-31

Completed: 2023-09-05

PO: www.downtoearthlabs.com info@downtoearthlabs.com

Test Done: ST

San	nple ID:	230831K019	230831K020	230831K021	230831K022	230831K023
Cust. San	nple ID:	Lot 3- S2	Lot 4- S1	Lot 4- S2	Lot 5- S1	Lot 5- S2
Analyte	Units	40	20	40	25	60
Sand	%	34.9	24.9	37.0	29.0	38.9
Silt	%	34.2	47.2	33.1	44.1	33.2
Clay	%	30.9	27.9	29.9	26.9	27.9
Soil Texture	_	Clay Loam	Clay Loam	Clay Loam	Loam	Clay Loam

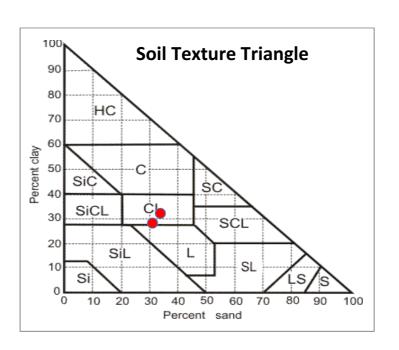
The Science of Higher Yields

Osprey Engineering Inc Report #: 159426 Report Date: 2023-09-05

Bergen

Received: 2023-08-31 Completed: 2023-09-05

Test Done: ST


PO:

Project :

3510 6th Ave North Lethbridge, AB T1H 5C3 403-328-1133 www.downtoearthlabs.com

info@downtoearthlabs.com

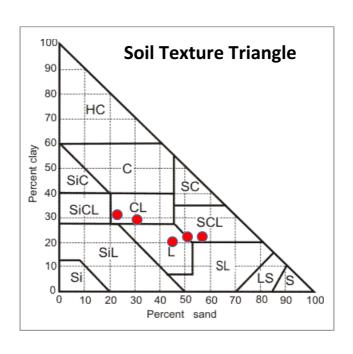
Sa	mple ID:	230831K024	230831K025	
Cust. Sa	mple ID:	Lot 6- S1	Lot 6- S2	
Analyte	Units	5	35	
Sand	%	31.2	34.0	
Silt	%	40.9	34.1	
Clay	%	27.9	31.9	
Soil Texture	-	Clay Loam	Clay Loam	

Raygan Boyce - Chemist

The Science of Higher Yields

Osprey Engineering Inc Report #: 159427 Project : 3510 6th Ave North Report Date: 2023-09-05 Bergen

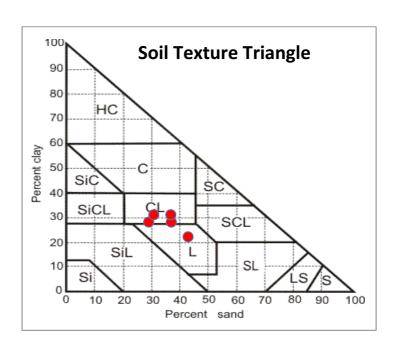
Received: 2023-08-31


Completed: 2023-09-05 Test Done: ST

PO:

Lethbridge, AB T1H 5C3 403-328-1133 www.downtoearthlabs.com

info@downtoearthlabs.com


	Tool Bollor (- 1					
	Sample ID:	230831L001	230831L002	230831L003	230831L004	230831L005	
Cust.	Sample ID:	Lot 7- S1	Lot 7- S2	Lot 8- S1	Lot 8- S2	Lot 9- S1	
Analy	te Units	15	30	20	55	15	
Sar	nd %	31.1	57.1	51.2	45.2	23.2	
S	ilt %	40.0	20.9	26.9	34.9	45.9	
Cla	ay %	28.9	22.0	21.9	19.9	30.9	
Soil Textu	re -	Clay Loam	Sandy Clay Loam	Sandy Clay Loam	Loam	Clay Loam	

The Science of Higher Yields

Osprey Engineering Inc	. , ,		59427 023-09-05	Project :	Bergen	3510 6th Ave North Lethbridge, AB 71H 5C3		
			: 2023-08-31 : 2023-09-05 PC : ST				403-328-1133 www.downtoearthlabs.com info@downtoearthlabs.com	
c		mple ID:	230831L006 Lot 9- S2	230831L007 Lot 10- S1	230831L008 Lot 10- S2	230831L009 Lot 11- S1	230831L010 Lot 11- S2	
	nalyte	Units	65	30	50	5	50	
	Sand	%	37.2	29.2	43.1	31.0	37.0	
	Silt	%	34.9	42.9	35.0	38.1	32.1	
	Clay	%	27.9	27.9	21.9	30.9	30.9	
Soil Te	exture	-	Clay Loam	Clay Loam	Loam	Clay Loam	Clay Loam	

The Science of Higher Yields

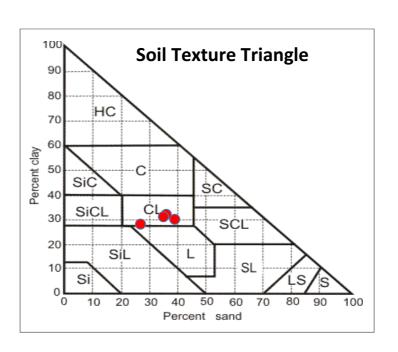
Osprey Engineering Inc Report #: 159427

Report Date: 2023-09-05

Report Date: 2023-09-05 **Received:** 2023-08-31

Completed: 2023-09-05

Project : Bergen


PO:

3510 6th Ave North Lethbridge, AB T1H 5C3 403-328-1133

403-328-1133 www.downtoearthlabs.com info@downtoearthlabs.com

Test Done: ST

Sa Cust. Sa Analyte	mple ID: mple ID: Units	230831L011 Lot 12- S1 15	230831L012 Lot 12- S2 35	230831L013 School TP- S1 25	230831L014 School TP- S2 55
Sand	%	27.0	36.1	35.1	39.1
Silt	%	45.1	32.0	34.0	31.0
Clay	%	27.9	31.9	30.9	29.9
Soil Texture	-	Clay Loam	Clay Loam	Clay Loam	Clay Loam

Raygan Boyce - Chemist

CHIN AREA STRUCTURE PLAN
PAGE 36
NORTH SIDE OF ALBERTA AVENUE, HAMLET OF CHIN (BLOCKS A, B & E, PLAN 899 AA, NE25-9-19-4)
27 NOVEMBER
2023
PRIVATE SEWAGE TREATMENT SYSTEMS (PSTS) ASSESSMENT
DOUGLAS J. BERGEN ASSOCIATES LTD.

APPENDIX B - WELL INFORMATION

The following records are from the Alberta Well Information Database (Alberta Environment and Parks, 2023) for the area within Section 25-9-19-4. It must be noted that well locations are often not described exactly, and the locations noted in this database are often for the centroid of the parcel, legal subdivision (LSD) or quarter-section in which the well is located.

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its

View in Metric Export to Excel

GIC Well ID 106250 GoA Well Tag No.

SOWN ID	accuracy. The information or	n this report will be retained in a	public database.		Date Report Receiv	
Well Identification and	Location				'	Measurement in Imperia
Owner Name KIENTOPP, WILLIAM	Address	Tow	n	Province	Country	Postal Code
Location 1/4 or LSD SE	SEC TWP RGE 25 9 19	W of MER Lot 4	Block Plan		nal Description	
Measured from Boundary	of ft from ft from	GPS Coordinates in De Latitude 49.760440 How Location Obtained Map	Longitude -1	· ·	Elevation How Elevation Obt Not Obtained	ftained
	'	wap		·	140t Obtained	
Drilling Information						
Method of Drilling Not Applicable		Type of Work Chemistry				
Proposed Well Use Domestic & Stock						
Formation Log		surement in Imperial	Yield Test Sum	-		Measurement in Imperia
Depth from Water ground level (ft) Bearing	Lithology Description		Recommended F Test Date	Pump Rate Water Removal	0.00 igpm Rate (igpm)	Static Water Level (ft)
			1984/09/11			45.00
			47.00 ft Borehole Diameter (0.00 Surface Casing Size OD Wall Thickness Bottom at Perforations	in) (if applicable) : 0.000 in : 0.000 in	Wall Thickner Top Botton	OD: 0.00 in ess: 0.000 in p at: 0.00 ft n at: 0.00 ft
			Amount Other Seals	0.00 ft to	0.00 ft	At (ft)
				: 0.00 in	_	
			From (ft))	To (ft)	Slot Size (in)
			Attachment			
					Bottom Fitti	ings
			Pack			
			Type Amount		Grain Size	
			Amount			

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name UNKNOWN DRILLER

Copy of Well report provided to owner Date approval holder signed

Certification No

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its

View in Metric Export to Excel

GIC Well ID GoA Well Tag No. 106250

Drilling Company Well ID

accuracy. The information on this report will be retained in a public database **GOWN ID**

Date Report Received 1984/09/12 Well Identification and Location Measurement in Imperial Owner Name Address Postal Code Town **Province** Country KIENTOPP, WILLIAM 1/4 or LSD SEC TWP RGF W of MER Block Plan Additional Description Location Lot SE 25 9 19 GPS Coordinates in Decimal Degrees (NAD 83) Measured from Boundary of Elevation Latitude 49.760440 Longitude -112.448856 ft ft from How Location Obtained How Elevation Obtained ft from Not Obtained Additional Information Measurement in Imperial Distance From Top of Casing to Ground Level Is Artesian Flow Is Flow Control Installed Rate Describe Recommended Pump Rate 0.00 igpm Pump Installed Depth ft Recommended Pump Intake Depth (From TOC) 0.00 ft H.P. Model (Output Rating) Did you Encounter Saline Water (>4000 ppm TDS) Depth ft Well Disinfected Upon Completion ft ____ Gas ____ Depth Geophysical Log Taken Remedial Action Taken Submitted to ESRD Sample Collected for Potability Submitted to ESRD Yes Additional Comments on Well Yield Test Taken From Ground Level Measurement in Imperial Depth to water level Test Date Start Time Static Water Level Elapsed Time Pumping (ft) Recovery (ft) 1984/09/11 12:00 AM 45.00 ft Minutes:Sec Method of Water Removal Туре Removal Rate Depth Withdrawn From If water removal period was < 2 hours, explain why Water Diverted for Drilling Water Source Amount Taken Diversion Date & Time ig

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name UNKNOWN DRILLER Certification No

Copy of Well report provided to owner Date approval holder signed

CHIN AREA STRUCTURE PLAN PAGE 39 27 November

NORTH SIDE OF ALBERTA AVENUE, HAMLET OF CHIN (BLOCKS A, B & E, PLAN 899 AA, NE25-9-19-4)

PRIVATE SEWAGE TREATMENT SYSTEMS (PSTS) ASSESSMENT

Douglas J. Bergen Associates Ltd.

REFERENCES

- Alberta Association of Municipal Districts & Counties in parthnership with Alberta Municipal Affairs. (2011). The Model Process for Subdivision Approval and Private Sewage, The Suitability and Viability of Subdivisions Relying on Private Sewage Systems. Edmonton: Alberta Association of Municipal Districts and Counties.
- AltaLIS JV. (2020). Lidar15 Digital Elevation Model. Edmonton, Alberta, Canada.
- Government of Alberta. (2023). Alberta Soil Information Viewer. Retrieved from Government of Alberta: https://soil.agric.gov.ab.ca/agrasidviewer/
- Government of Alberta. (2023). Groundwater Information Centre. Retrieved from Government of Alberta: https://groundwater.alberta.ca
- Rural Municipalities of Alberta. (2011). Model Process for Subdivision Approval and Private Sewage. Nisku: Rural Municipalities of Alberta.
- Safety Codes Council. (2021). Alberta Private Sewage Systems Standard of Practice. Edmonton: Government of Alberta.

APPENDIX D
Martin Geomatic Consultants Ltd. Stormwater Management Plan

STORMWATER MANAGEMENT PLAN

CHIN MEADOWS GROUP COUNTRY RESIDENTIAL SUBDIVISION

Legal Description: Blocks A, B, & E, Plan 899 AA, NE1/4 25-9-19-4

Municipality: Hamlet of Chin, Lethbridge County, AB

Prepared for: Douglas Bergen and Associates Ltd.

File Number: 240761CE

Dated: April 17, 2024

Prepared By: Martin Geomatic Consultants Ltd.

255 – 31st Street No. Lethbridge, AB T1H 3Z4

403-329-0050 geomart@mgcl.ca April 17, 2024 File: 229729CE

Douglas Bergen and Associates Ltd. Box 1667 Coaldale, AB T1M 1N3

Dear Doug,

Re: Stormwater Management Plan
Proposed Subdivision in NE 1/4 Sec 25-9-19-W4M, Blk. A,B &E, Plan 899AA

We are pleased to submit the Stormwater Management Plan for the Proposed Subdivision in NE ¼ Sec 25-9-19-W4M. This report examines the stormwater management requirements to subdivide the subject property located in the Hamlet of Chin, AB.

PERMIT NUMBER: P 5852
The Association of Professional
Engineers and Geoscientists of Albarta

We trust that this report meets with your needs.

Yours truly,

MARTIN GEOMATIC CONSULTANTS LTD.

Ray Martin, P.Eng. Senior Project Manager

Enclosure

CORPORATE AUTHORIZATION

This report has been prepared by Martin Geomatic Consultants Ltd. (MGCL) under the authorization of Doug Bergen & Associates Ltd.. The material in this report represents the best Judgement of MGCL given the available information. Any use that a third party makes of this report, or reliance on or decisions made base upon it is the responsibility of the third party. MGCL accepts no responsibility for damages, if any, suffered by a third party, as a result of decisions made, or actions taken based upon this report. This report is to be used by the clients noted and the authority having jurisdiction for the purposes noted.

Should any questions arise regarding the content of this report, please contact the undersigned.

MARTIN GEOMATIC CONSULTANTS LTD.

Ray Martin, P.Eng. Senior Project Manager 2024-04-17

PERMIT NUMBER: P 5852
The Association of Professional

Table of Contents

1.0		Background	5
	A.	General	5
	В.	Existing Site Drainage and Features	5
	C.	Previous reports and Purpose	5
2.0		Methodology and Assumptions	5
	A.	Proposed Site Drainage	5
	В.	Methodology	7
	C.	Rainfall Runoff Results)
3.0		Stormwater Detention	L
4.0		Release Rates	1
5.0		Conclusions and Recommendations	1
List	t of	<u>f Tables</u>	
Tabl	e 1	– IDF Parameters for City of Lethbridge Design Storm	7
Tabl	e 2	– SWMM5 Model Pre-Development Sub-catchment Parameters	3
Tabl	e 3	- SWMM5 Model Post Development Sub-catchment Parameters8	j
Tabl	e 4	- SWMM5 Model Soil Characteristics Parameters9	
Tabl	e 5	- Pre-Development 100 year-24 hour Storm Sub-catchment Runoff9	
Tabl	e 6	- Post-Development 100 year-24 hour Storm Sub-catchment Runoff10)
Tabl	e 7	– Existing Storage Units Depth - Area – Volumes1	1
Tabl	e 8	- Proposed Storage Units Depth - Area - Volumes12	!
Tabl	e 9	- Pre-Development Storage Response to 100 Year Storm13	,
Tabl	e 10	0 – Post-Development Storage Response to 100 Year Storm13	
Tabl	e 1:	1 – Chin Meadows Release Rates - 100 year / 24 hour14	

<u>Appendix</u>

Appendix A – List of Figures Appendix B – Soil Information

Appendix C - SWMM Model Results

1.0 Background

A. General

The Chin Grouped Country Residential Area Structure plan proposes amendments to the land use for the area located on the north side of the Hamlet of Chin; north of Alberta Avenue and west of Range Road 190 occupying an area of approximately 39.42 acres. The legal description of the proposed land occupied is included in Blocks A, B, & E; Plan 899AA (NE1/4 Sec.25-9-19-4), and is located in Lethbridge County adjacent to the west corporate limit of the Municipal District of Taber. **Figure 1 – Project Location** shows the project location.

The proposed amendment would allow the subdivision of:

- 12 additional group country residential lots (min. 2 acres each)
- 1 school lot (approx.. 2.7acres)
- 2 Stormwater dry ponds (approx. 1.38 acres and 1.33 acres) PUL
- The remainder of the land (5.99 acres) to be subdivided into an additional 2.0 acre parcel, leaving 3.99 acres for the existing house and auxiliary buildings.

A public road is proposed to extend north of Naismith Street and loop east to Range Road 19.0. The proposed lot layout is shown in **Figure 3 - Land Use.**

B. Existing Site Drainage and Features

The existing site is generally undeveloped and mainly flat with some rolling slopes with a couple of trapped low depressions and a mixed vegetated ground cover of natural grass and agricultural crops. The combined drainage area considered in this stormwater analysis is approximately 98.38 ha which consists of 4 sub-catchment areas draining to two natural depressions located in the middle of the areas and connected by a poorly defined swale cascading to the S.W. through other natural depressions finally discharging approx. 1.4km downstream into the Canadian Pacific Railway ROW and on another 300m out falling into the Saint Mary's Irrigation District Canal (SMRID).

Average longitudinal slopes within the drainage swale range from 0% to 0.2% with slopes in the depressions storage areas ranging from 0.2 – 1.8%. High points in the depression storage areas pond the runoff to depths of approximately 0.5m with the elevation of the final discharge off the development area at 845.75. Existing soil descriptions for the area include loam (L) and silt loam Orthic Dark Brown Chernozem on medium textured (L, SiL) sediments deposited by wind and water (LET), as defined in soil polygon 1334 and 1337 which encompasses an area of 988 ha¹. **Appendix B – Soil Information.**

¹ Alberta Soil Information Viewer, Alberta Agriculture and Forestry, http://www4.agric.gov.ab.ca/agrasidviewer

Soil logs performed by Osprey Engineering Inc. in September of 2023 do not indicate continued or frequent saturation.

Visual inspection of air photos (dating back to 1985) of the overall development area and west, do not show long term ponding or wetlands. However, there is some evidence of minor localized ponding in the area on the north side of the existing buildings along Range road 190. The existing sub-catchment areas are shown on the attached **- Figure 7 - Pre-Development Sub-Catchments.**

C. Previous reports and Purpose

Based on comments and recommendations by Lethbridge County and the proposed lot layouts, onsite storage and ponding is required to be restricted to defined ponds to minimize impact on available developable areas. Martin Geomatic Consultants Ltd. (MGCL) was engaged to provide a stormwater management plan to reflect the requirements for storage and controlled release of all the onsite drainage.

Osprey Engineering Inc. completed a Private Sewage Treatment Systems Assessment (PSTS) on November 27, 2023² intensity and the soil logs were used as reference in MGCL's modelling.

2.0 Methodology and Assumptions

A. Proposed Site Drainage

The proposed ASP land development project includes the addition of 12 group country residential lots, a school, 2 subdivided parcels of land with existing buildings and landscaping, and 2 PUL dry ponds. The total developed area including asphalt roads and ditches will include approximately 39.42 acres of land at full build out. The proposed stormwater management system includes underground pipe between ponds and grass swales for overland flows, culverts, and a stormwater lift station to discharge the stored stormwater at a rate less than pre-development rates.

Site grading of the land will direct runoff away from the buildings and into swales to convey water towards the designated constructed storage facilities. The constructed storage facilities will be sized to contain the runoff from a 1:100 year – 24 hour storm event with a controlled release of approximately 9 l/s, discharging to a dispersion ditch located on the N.W. corner of the west dry pond. The proposed stormwater system is shown on the attached **Figure 8 – Post Development sub-catchments**.

² Osprey Engineering Inc., Private Sewage Treatment Systems Assessment (PSTS), November 27, 2023

B. Methodology

Drainage analysis of the proposed development has been completed to determine runoff, storage, and discharge rates for pre and post-development conditions.

Single-event modelling was used to determine maximum flow rates and storage volumes. Modelling was conducted using the United States Environmental Protection Agency Storm water Management Model (EPA-SWMM5) – version 5.2.4³.

Existing site analysis (pre-development) has been analyzed to determine a benchmark for allowable release rates at the post development conditions if allowed. A stormwater management model has been built to assist with the analysis. The following parameters are included in the modeling:

- 1. Rainfall time step = 5 minutes
- 2. Simulation duration = 24 hrs
- 3. Routing Method: Dynamic Wave
- 4. No effect of Evaporation and Groundwater
- 5. Total Catchment area = 82.7 ha
- 6. Infiltration Method: Green Ampt
- 7. Manning's N Impervious = 0.015
- 8. Manning's N Pervious = 0.15 (undeveloped), 0.1 (developed)
- 9. Depression Storage Pervious = 5mm (undeveloped), 3.8mm (developed)
- 10. Depression Storage Impervious = $0.77*(S\%)^{-0.49}$

For single-event modeling, the design storm distribution employed for this study is the Chicago distribution using the City of Lethbridge⁴ intensity-duration-frequency (IDF) curves of the form:

$$i = a/(t+b)^c$$
 where

i is the rainfall intensity for a given return period at a given storm duration in mm/hr, t is the duration of the storm in minutes,

a, b, c are parameters defining the curve for a given return period.

IDF curves used for this study are for the 100-year return period with a 24 hour duration (t_d) of the storm. The following parameters were used:

Table 1 – IDF Parameters for City of Lethbridge Design Storm

Return period	а	b	С
100 years	1019.2	0	0.731

³ EPA Storm Water management Model – Version 5.0 (Build 5.2.4)

⁴ City of Lethbridge Design Standards 2021 Edition

The following assumptions and parameters have been used in the stormwater model sub-catchments:

Table 2 – SWMM5 Model Pre-Development Sub-catchment Parameters⁵

							D.
Catchment	Area	Lenth	Slope	Soil	H. Con	S.Head	store.Imperv
ID	ha	m	%	texture	mm/hr	mm	mm
S1	23.305	495	0.68	L, SCL, CL	1.95	172.97	0.93
S2	38.593	914	1.8	L, SCL, CL	1.95	172.97	0.58
S3	15.383	328	0.68	L, SCL, CL	1.95	172.97	0.93
S4	9.118	222	1.3	L, SCL, CL	1.95	172.97	0.68
S5	11.927	291	1.06	L, SCL, CL	1.95	172.97	0.75
Total :	98.33						_

Table 3 - SWMM5 Model Post Development Sub-catchment Parameters⁶

Catchment	Area	Lenth	Slope	Soil	H. Con	S.Head	D. store.lmperv
ID	ha	m	%	texture	mm/hr	mm	mm
S1	24.142	496	0.68	L, SCL, CL	1.95	172.97	0.93
S2	38.612	906	1.2	L, SCL, CL	1.95	172.97	0.70
S3	2.775	296	0.57	L, SCL, CL	1.95	172.97	1.01
S4	3.091	222	1.36	SC, CL	1.95	172.97	0.66
S5	11.5525	282	1.32	L, SCL, CL	1.95	172.97	0.67
S6	1.429	473	1.1	L, SCL, CL	1.95	172.97	0.73
S 7	2.452	168	0.35	L, SCL, CL	1.95	172.97	1.29
S8	2.842	214	2.1	L, SCL, CL	1.95	172.97	0.54
S9	1.864	136	0.9	L, SCL, CL	1.95	172.97	0.81
S10	0.3644	182	1	L, SCL, CL	1.95	172.97	0.77
S11	1.4081	117	1.1	L, SCL, CL	1.95	172.97	0.73
S12	0.786	267	0.9	L, SCL, CL	1.95	172.97	0.81
S13	6.382	212	1.3	SC, CL	1.95	172.97	0.68
S14	0.609	405	0.5	L, SCL, CL	1.95	172.97	1.08
Total:	103.56						

⁵ http://help.xpsolutions.com/display/xps2015/Infiltration

⁶ http://help.xpsolutions.com/display/xps2015/Infiltration

Table 4 - SWMM5 Model Soil Characteristics Parameters⁷

Soil Texture	Hydraulic	Suction	Porosity	Field Capacity	Wilting Point
Class	Conductivity (mm/hr)	Head (mm)	(fraction)	(fraction)	(fraction)
Loam	3.3	88.9	0.463	0.232	0.116
Sandy Clay Loam	1.52	219.96	0.398	0.244	0.136
Clay Loam	1.02	210.06	0.464	0.31	0.187

Avg Loam/Sandy Clay Loam / Clay Loam 1.95 172.975 0.445 0.265 0.146

C. Rainfall Runoff Results

The following table summarizes the sub-catchment runoff for the pre-development 100 year – 24 hour design storm as illustrated in **Figure 7 – Pre-Development Sub-Catchments**.

Table 5 - Pre-Development 100 year-24 hour Storm Sub-catchment Runoff

Name	Area	Imperv.	Precip.	Infiltration	Runoff Depth	Runoff Volume	Peak Runoff
	(ha)	(%)	(mm)	(mm)	(mm)	(ML)	(m³/s)
S1	23.31	0	120.15	70.0	44.96	10.48	0.66
S2	38.59	0	120.15	70.1	44.04	17.00	0.99
S3	15.38	15	120.15	59.17	59.09	9.09	2.30
S4	9.12	25	120.15	49.25	70.49	6.43	2.73
S5	11.93	1	120.15	68.81	50.05	5.97	0.61

⁷ http://support.chiwater.com/support/solutions/articles/35660-soil-characteristics

The post-development sub-catchment runoff for 100 year – 24 hour design storm is listed in **Table 6** and illustrated in **Figure 8 – Post-Development Sub-Catchments**.

Table 6 - Post-Development 100 year-24 hour Storm Sub-catchment Runoff

Name	Area	Imperv.	Precip.	Infiltration	Runoff Depth	Runoff Volume	Peak Runoff
	(ha)	(%)	(mm)	(mm)	(mm)	(ML)	(m³/s)
S1	24.14	0	120.15	69.87	46.23	11.16	0.79
S2	38.61	0	120.15	70.08	44.19	17.06	1.01
S3	2.78	15	120.15	56.08	62.71	1.74	0.52
S4	3.09	20	120.15	51.62	68.42	2.11	1.26
S5	11.55	1	120.15	68.08	51.50	5.95	0.78
S6	1.43	15	120.15	60.08	50.39	0.72	0.20
S7	2.45	15	120.15	56.69	62.87	1.54	0.47
S8	2.84	40	120.15	36.97	81.58	2.32	1.34
S9	1.86	15	120.15	55.55	64.21	1.20	0.47
S10	0.36	0	120.15	67.26	52.49	0.19	0.04
S11	1.41	10	120.15	59.69	60.16	0.85	0.32
S12	0.79	15	120.15	56.24	63.6	0.50	0.22
S13	6.38	25	120.15	49.19	70.56	4.50	1.94
S14	0.61	0	120.15	69.63	48.37	0.29	0.03
S15	1.34	25	120.15	50.02	69.71	0.93	0.41

3.0 Stormwater Detention

The existing ground surface data was obtained utilizing Lidar 7.5 DEM data from Altalis, and GPS ground survey⁸ overlaid by georeferenced Air photos. Based on discussions with Lethbridge County, onsite stormwater is required to be controlled and contained within easements or a PUL. Therefore, existing onsite low areas and depressions which currently trap and store runoff water will be reshaped and 2 new dry ponds established in the low areas to store and detain the post development runoff. Runoff will be directed in to the storm ponds through grass swallows along property boundaries as well as a underground storm pipe connecting the 2 storm ponds. The following stage storage tables are provided for pre and post development scenarios with the existing topographical depressions and the constructed storage units. Table 5 shows the runoff storage units for the existing (pre-development) topographical depressions in the proposed development area and surrounding land to the west. The existing depressions range in area from approximately 14,000 m² to 39,000 m², and vary in volume between 2,200 m³ and 2,900 m³.

Table 7 - Existing Storage Units Depth - Area - Volumes

Elevation	Depth	Area	Incremental Volume	Cumulative Volume
(m)	(m)	(m²)	(m³)	(m³)
SU-1Pre (East)				
845.4	0.0	29	0	0
845.6	0.2	924	750	750
845.7	0.3	5,550	1,210	1,960
845.82	0.42	13,864	960	2,920
SU-2Pre(West)				
845.2	0.0	10	0	0
845.4	0.2	900	64	64
845.6	0.4	2,853	336	400
945.8	.6	39,000	1,839	2,239

⁸ GPS ground survey completed by Spencer Surveys in September of 2023.

Table 8 presents the proposed storage units to be constructed with the development. East pond and West Ponds are rectangular ponds located in the development area and Storage unit SU-2 is the existing storage depression located downstream of the development. The constructed storage units range in area from approximately 5,600 m² to 5,600 m², and vary in volume between 5,500 m³ and 11,000 m³.

Table 8 - Proposed Storage Units Depth - Area - Volumes

			Incremental	Cumulative
Elevation	Depth	Area	Volume	Volume
(m)	(m)	(m ²)	(m³)	(m³)
East Pond				
842.0	0.0	782	0	0
842.6	0.6	1,394	633	633
843.0	1.0	1,840	645	1,278
843.6	1.6	2,548	1312	2,590
844.0	2.0	3,044	1116	3,706
844.6	2.6	3,831	2055	5,761
845.0	3.0	4,381	1639	7,400
845.6	3.6	5,415	2891	10,291
845.68	3.68	5,774	439	10,730
West-Pond				
842.6	0	233	0	0
842.8	0.2	394	65	65
843	0.4	562	96	161
843.6	1	1116	499	660
844	1.4	1742	526	1186
844.6	2	2201	1111	2297
845	2.4	2692	974	3271
845.6	3	3475	1843	5114
845.79	3.19	3,747	679	5,793
SU-2Post				
845.0	0.0	100	0	0
845.6	0.6	38,394	11,548	11,548
845.8	0.8	69,390	10,778	22,326

Table 9 shows the results of the pre-development runoff scenario for the existing topographical depressions as illustrated in **Figure 7 – Pre-Development Drainage Areas**.

Table 9 - Pre-Development Storage Response to 100 Year Storm

Storage Unit	Max. Volume	Peak Inflow	Peak Outflow	Max Depth	Max. HGL
	(ML)	(m³/s)	(m³/s)	(m)	(m)
SU-1Pre	5.246	5.447	1.478	0.60	846.0
SU-2Pre	21.031	2.949	1.282	0.78	845.98

All of the storage units in Table 9 (SU-1Pre and SU-2Pre) are existing topographical depressions where runoff water is trapped and detained on site in the pre-development scenario.

Table 10 shows the results of the post-development runoff scenario for the existing topographical depressions and proposed storage units. Refer to **Figure 8 – Post-Development Catchment Areas** for an illustrative map.

Table 10 - Post-Development Storage Response to 100 Year Storm

Storage Unit	Proposed / Existing	Max. Volume	Peak Inflow	Peak Outflow	Max Depth	Max. HGL
		(ML)	(m³/s)	(m³/s)	(m)	(m)
East_Pond	Р	9.154	4.251	0.015	3.37	845.37
West_Pond	Р	4.380	1.683	0.018	2.71	845.30
SU-2Post	Е	12.884	0	1.609	0.40	845.63

4.0 Release Rates

The following table shows a summary of the pre-development and post-development release rates leaving the site during a 100 year storm event. There is one outfall location for the discharge and overland flow leaving the site (refer to attached figures). The pump discharge offsite is located along the west boundary of the site located at the NW corner of the West Pond. No overland flow is expected from the development as the West and East ponds are sized to contain all the runoff from a 1:100 year – 24hour storm event. There will be a storm lift station located at the West Pond and the pump will be sized to drain the two ponds at a rate of approximately 18 l/s during and after the storm event until the ponds are dry. At this rate it is estimated it will take approximately 9 days to pump the ponds down. Larger pumps could be installed if reduced time is required. The pump discharge will be to a lined swale/ditch constructed with rip rap to disperse and fan out the flow into the downstream depression in the cultivated field to the west of the development.

Table 11 - Chin Meadows Release Rates - 100 year / 24 hour

	C)F1		OF2
100 yr / 24 hr	Overland	Volume	PUMP	Volume
Scenario	Q_{peak}		Q_{peak}	
	(m³/s)	(ML)	(m³/s)	(ML)
Pre-Development	0.06	3.68	0.0	0.0
Post-Development	0.00	0.00	0.018	13.534

5.0 Conclusions and Recommendations

This letter report summarizes the runoff analysis and stormwater management system for the proposed Chin Meadows Group Country Residential Development in Chin, Alberta.

The proposed storage units have been designed and sized to detain runoff water with the purpose of mitigating the effects of runoff from the development to the downstream environment. Based on the hydraulic model, the post-development discharge rate of 0.018 m³/s leaving the Chin Meadows Development site does not exceed the pre-development rate.

In order to control runoff leaving the site to maintain the pre-development levels or better, the proposed development would require stormwater storage on-site spread out over several ponds to catch the runoff coming from the developed areas. The concept design followed in this report includes two proposed stormwater storage ponds with a combined storage volume of approximately $13,500 \, \text{m}^3$.

The EPA-SWMM5 Model files are attached for reference.

Yours truly,

MARTIN GEOMATIC CONSULTANTS LTD.

Ray Martin, P.Eng.

Senior Project Manager

PERMIT TO PRACTICE Martin Geometric Consultations Ltd Signature: 2024-04-17

PERMIT NUMBER: P 5852
The Association of Professional
Engineers and Gooscientists of Alberta

<u>APPENDIX "A"</u> <u>LIST OF DRAWINGS:</u>

Figure 1 – Project Location

Figure 2 – Ortho Photo

Figure 3 – Land Use

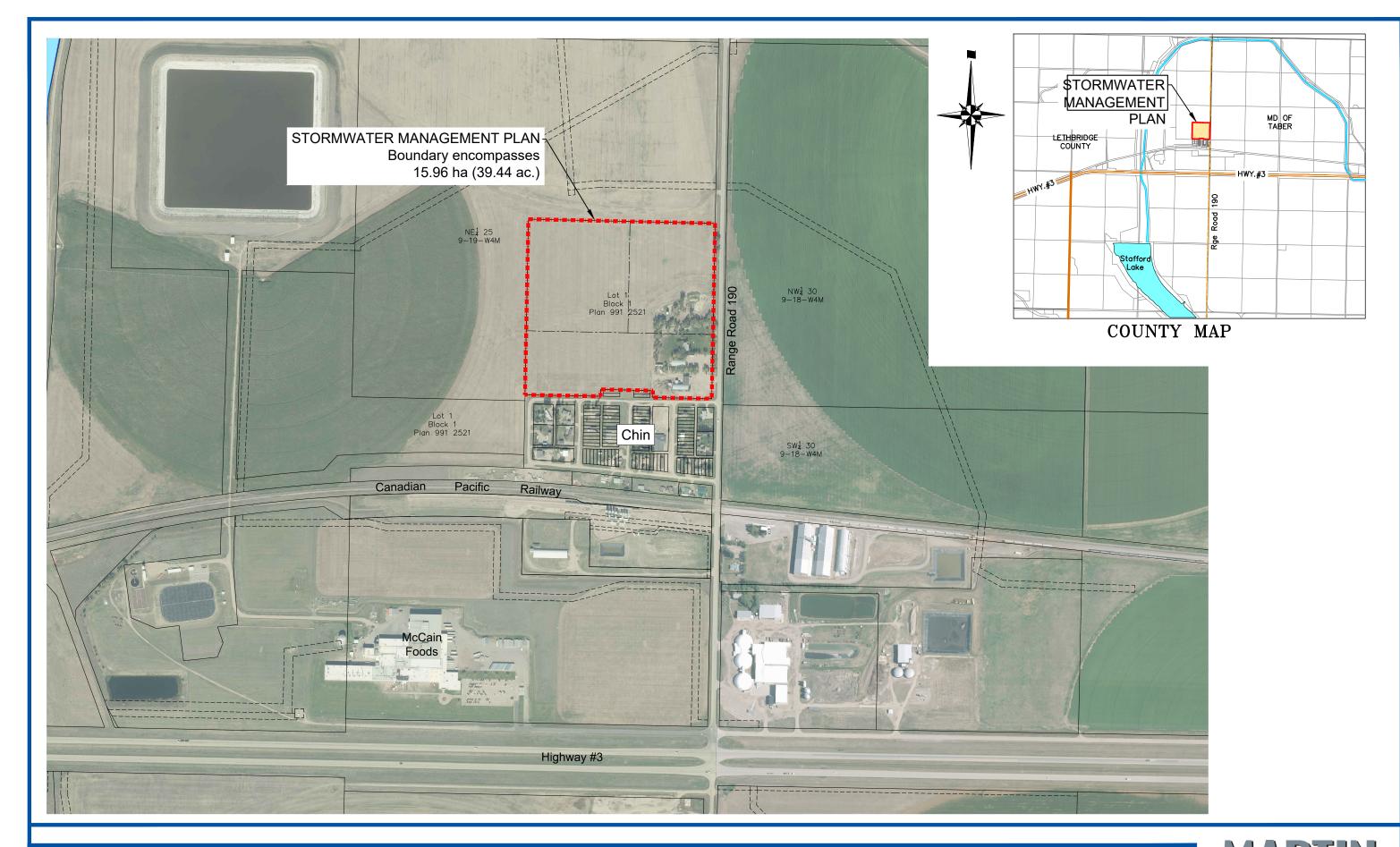
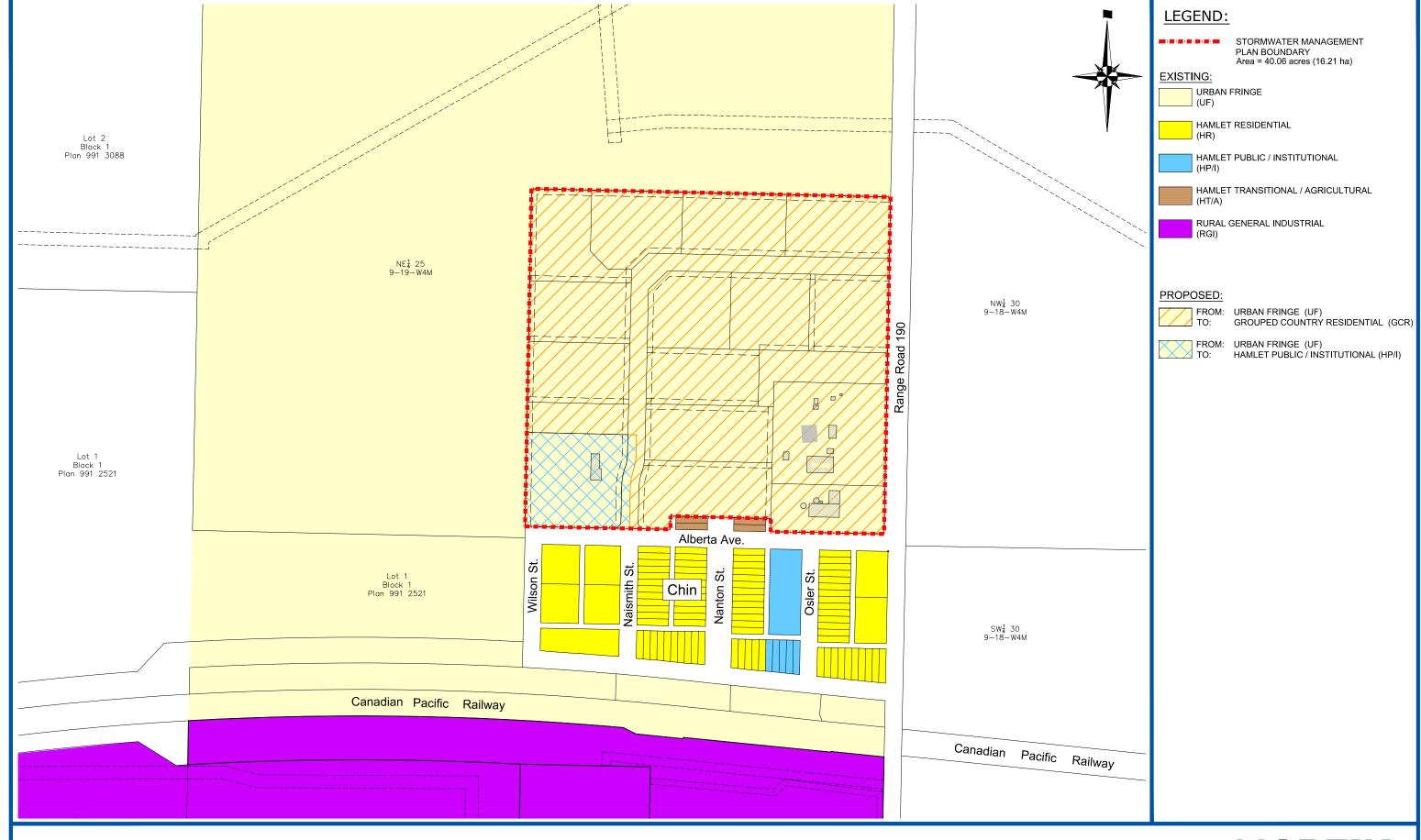

Figure 4 – Existing site Plan

Figure 5 – Pre- Development Drainage Areas

Figure 6 – Stormwater Drainage Concept

Figure 7 – Pre-Construction Drainage Areas

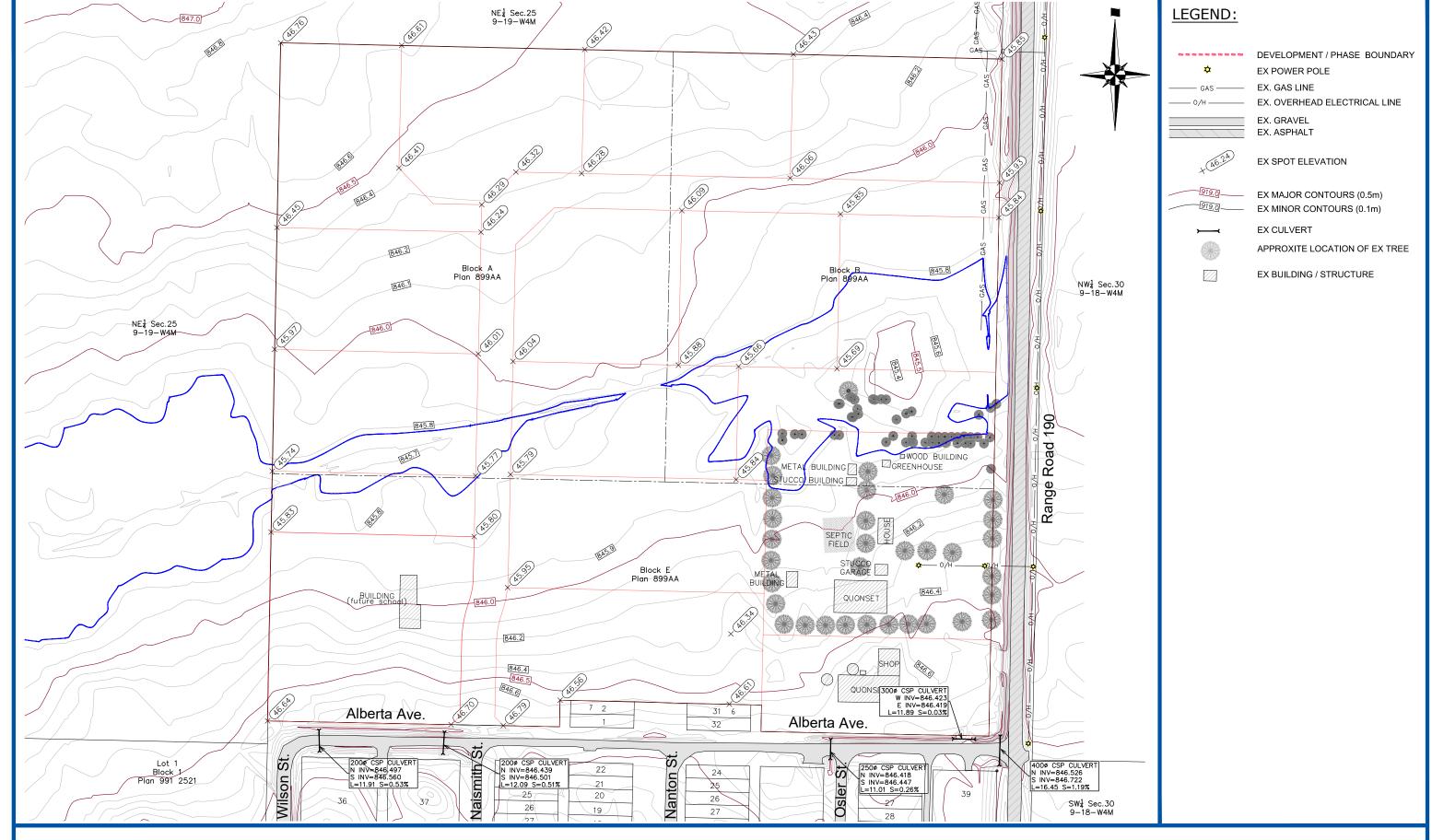
Figure 8 - Post-Construction Drainage Areas



LEGEND:

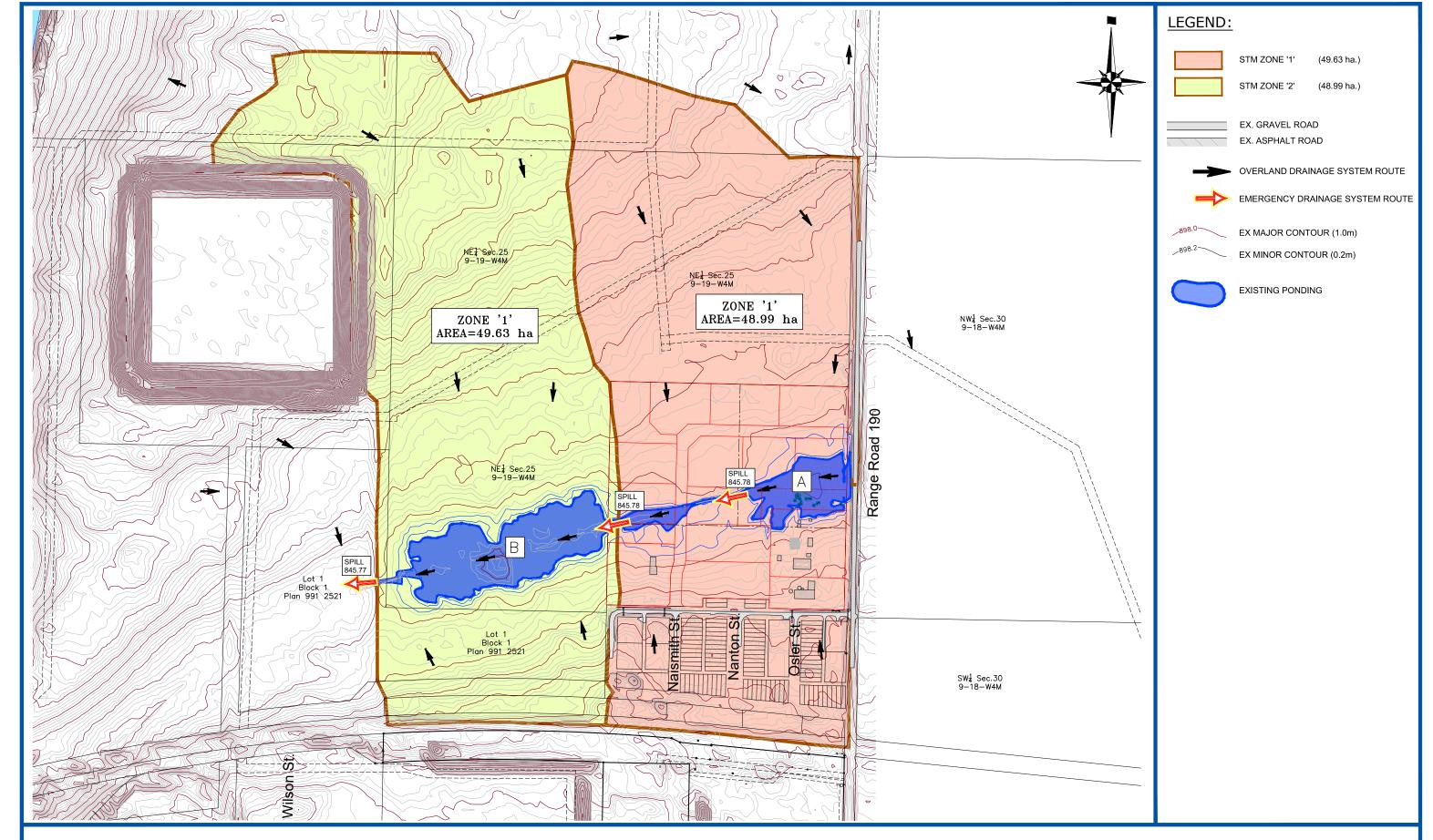
Chin Town Expansion
STORMWATER MANAGEMENT
May 25, 2924

ORTHO PHOTO Figure 2



Chin Town Expansion
STORMWATER MANAGEMENT
May 25. 2924

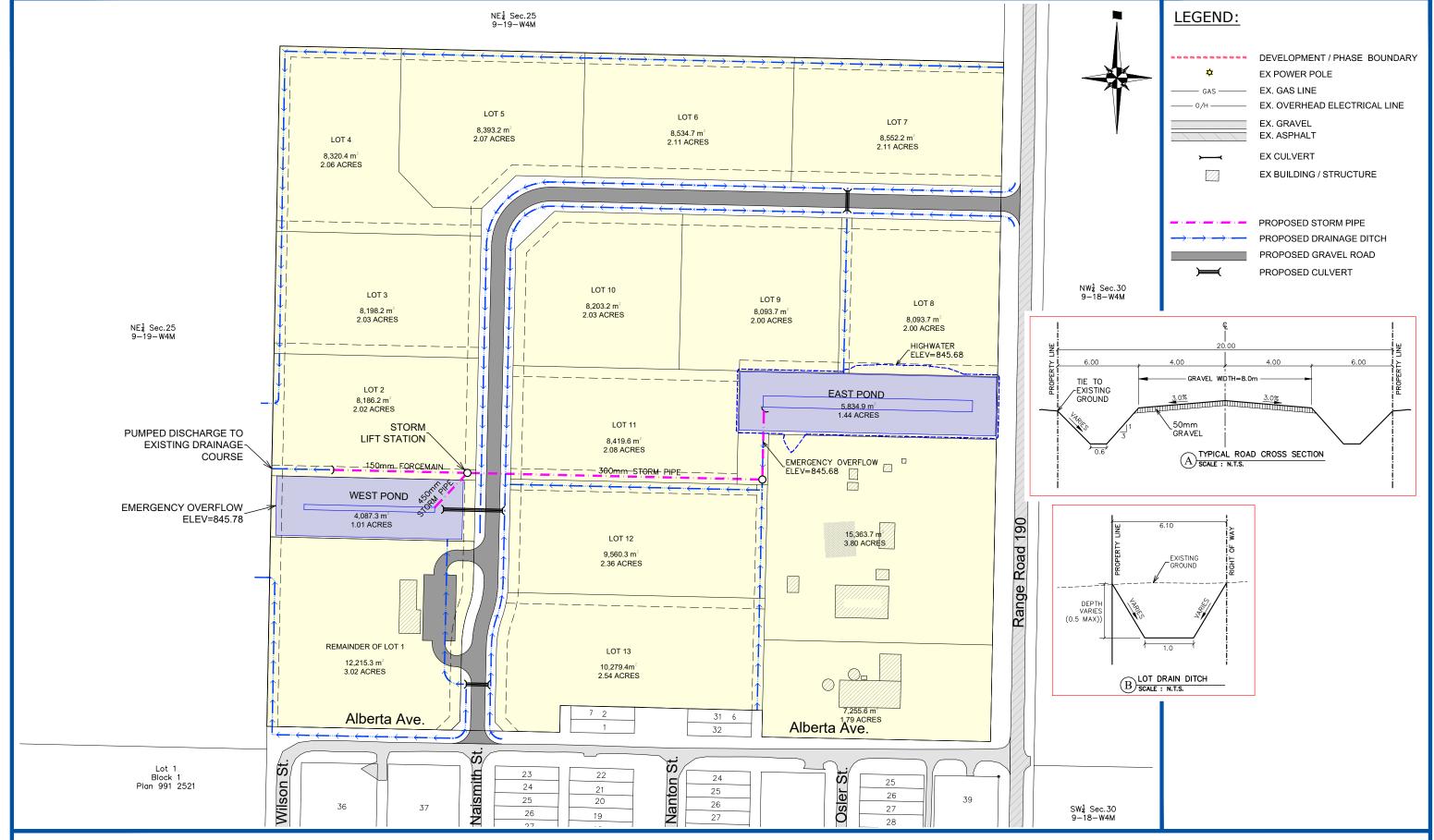
LAND USE Figure 3


Chin Town Expansion

STORMWATER MANAGEMENT

May 25, 2924

EXISTING SITE PLAN Figure 4


Chin Town Expansion

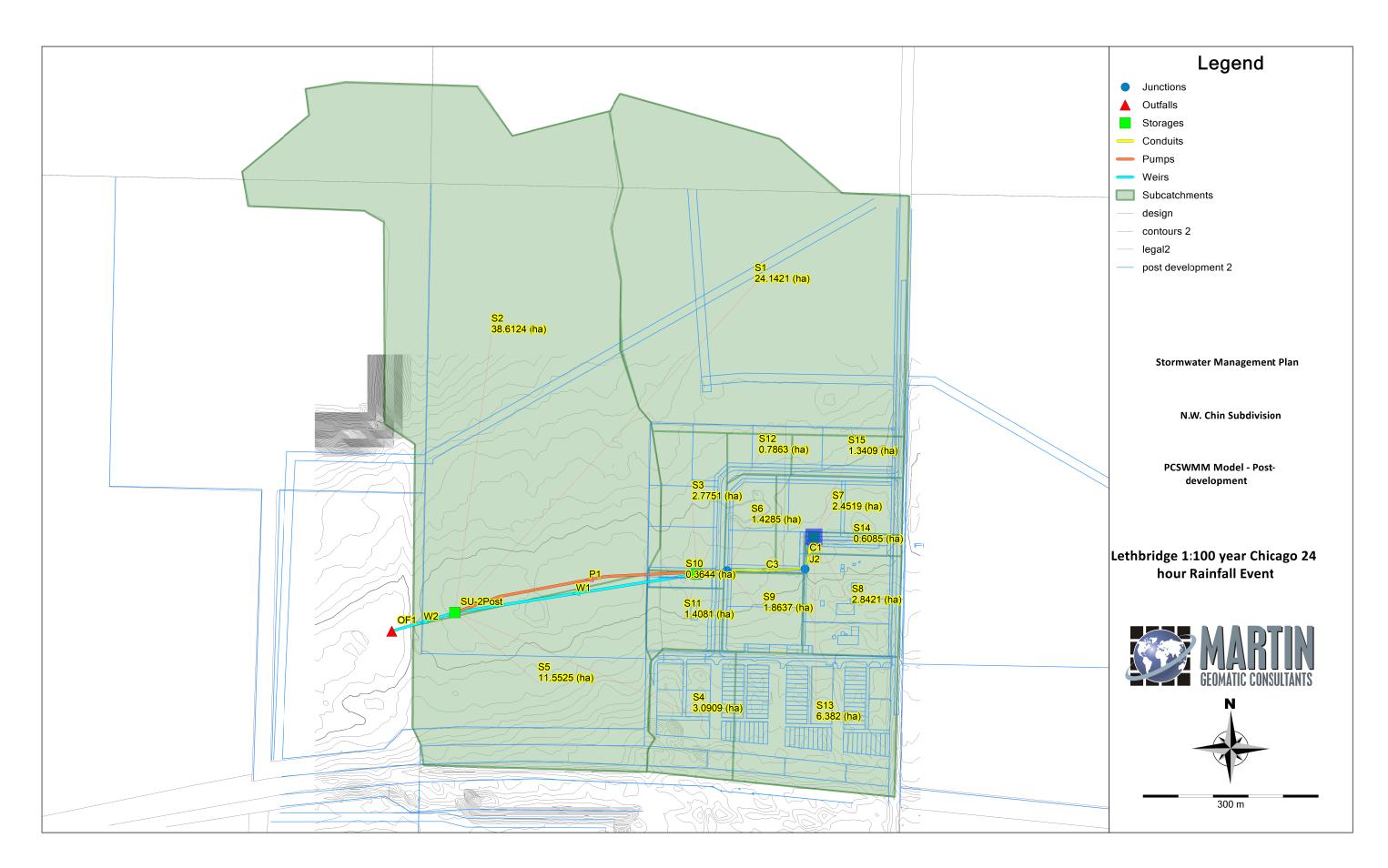
STORMWATER MANAGEMENT

May 25, 2924

PRE-DEVELOPMENT DRAINAGE AREAS
Figure 5

GEOMATIC CONSULTANTS
Consulting Engineers, Planners, and Land Surveyors
255-31st Street North Lethbridge, Alberta T1H 3Z4
Ph: (403) 329-0050 E-mail: geomart@mgcl.ca Fax: (403) 329-6594

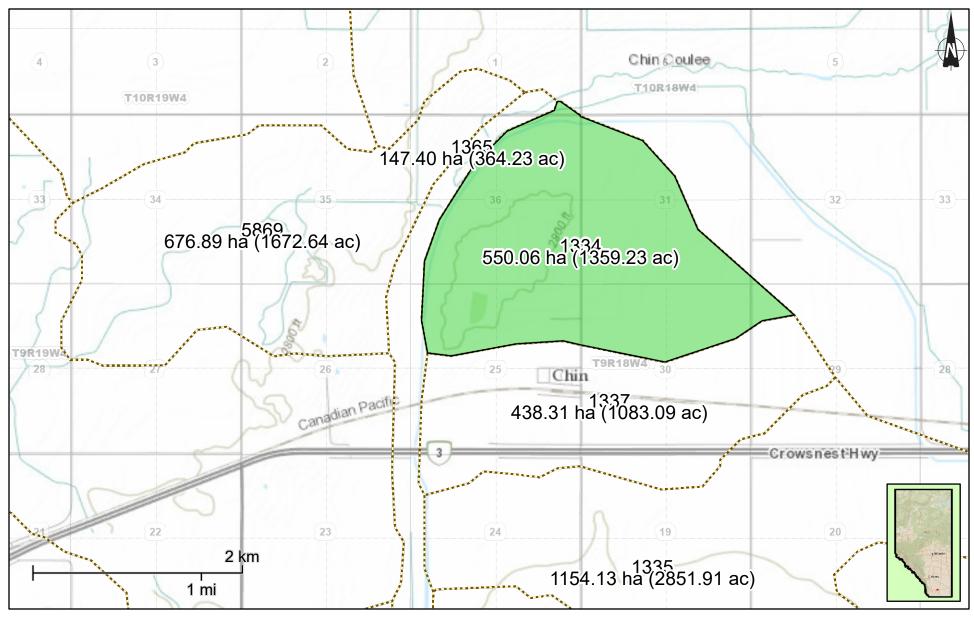
Chin Town Expansion


STORMWATER MANAGEMENT

Mar 25, 2024

STORMWATER DRAINAGE CONCEPT Figure 6

GEOMATIC CONSULTANTS
Consulting Engineers, Planners, and Land Surveyors
255-31st Street North Lethbridge, Alberta T1H 3Z4
Ph: (403) 329-0050 E-mail: geomart@mgcl.ca Fax: (403) 329-6594



<u>Appendix B – Soil Information</u>

April 17, 2024

Soil Landscape Polygons

Scale 1:36,112 1 inch = 3009.33 feet 1 cm = 361.12 metres Map centre at latitude +49.769°N and longitude -112.455°E Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community

Alberta Agriculture and Forestry and Agriculture and Agri-Food Canada

Government of Alberta, Alberta Open Government Licence

Report on Soil Polygon: 1334

Variable	Value
POLY_ID	1334
Map Unit Name	CFCH1/U1hc
Landform	U1h - undulating - high relief
LSRS Rating (Spring Grains)	4M(10)

Landscape Model Descriptions:

Orthic Brown Chernozem on medium textured (L, SiCL, CL) materials over medium (L, CL) or fine (C) textured till (CFD).

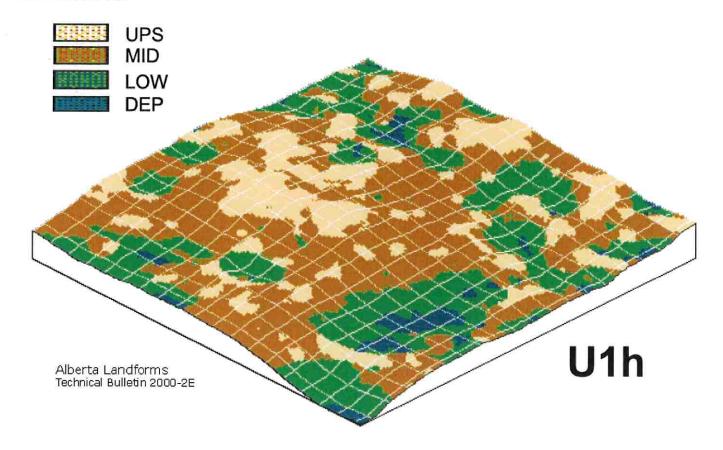
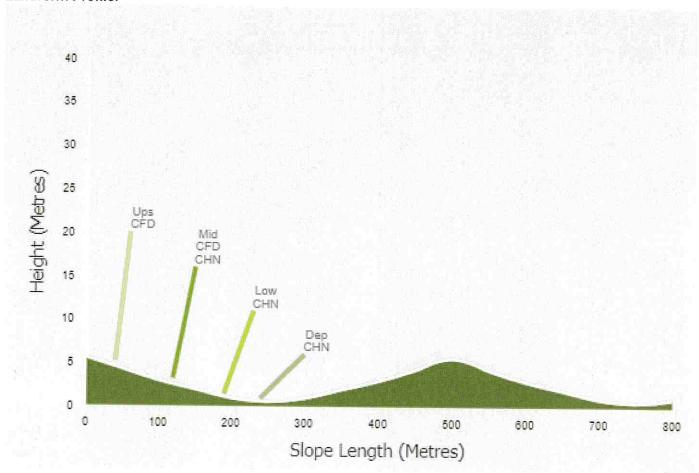

Orthic Brown Chernozem on medium textured (L, SiL) sediments deposited by wind and water (CHN). The polygon may include soils that are not strongly contrasting from the dominant or co-dominant soils (1). Undulating, high relief landform (channeled) with a limiting slope of 4% (U1hc).

Image:



Landform Model:

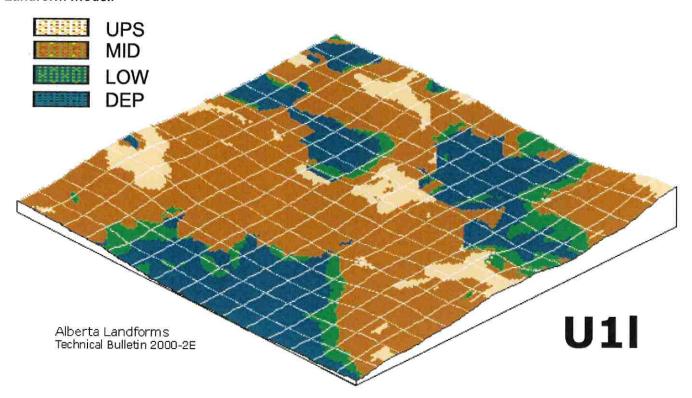
Landform Profile:

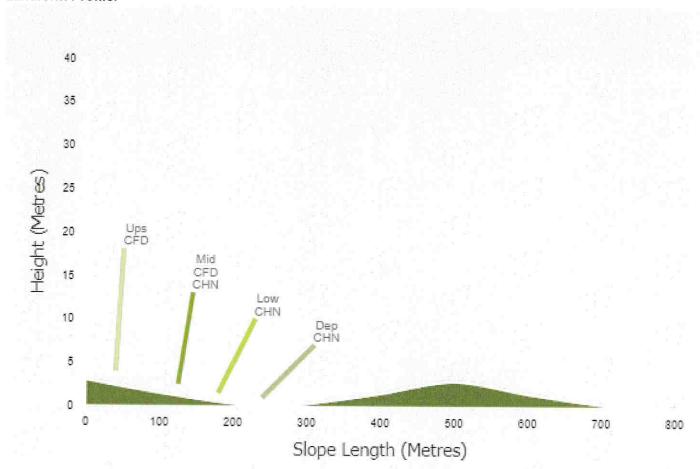
Report on Soil Polygon: 1337

Variable	Value
POLY_ID	1337
Map Unit Name	CFCH1/U1lc
Landform	U1I - undulating - low relief
LSRS Rating (Spring Grains)	4M(10)

Landscape Model Descriptions:

Orthic Brown Chernozem on medium textured (L, SiCL, CL) materials over medium (L, CL) or fine (C) textured till (CFD).


Orthic Brown Chernozem on medium textured (L, SiL) sediments deposited by wind and water (CHN). The polygon may include soils that are not strongly contrasting from the dominant or co-dominant soils (1). Undulating, low relief landform (channeled) with a limiting slope of 2% (U1Ic).



Landform Model:

Landform Profile:

<u>Appendix C – SWMM Model Results</u>

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.4)

North Chin Residential Development

Element Count

Number of rain gages 3

Number of subcatchments ... 15

Number of nodes 5

Number of links 5

Number of pollutants 0

Number of land uses 0

* * * * * * * * * * * * * * * *

Name	Data Source	Data Type	Recording Interval
Chicago_100yr24hr Chicago 100yr4hr	Chicago_100yr24hr Chicago 100yr4hr	INTENSITY INTENSITY	5 min. 5 min.
Chicago_5yr4hr	Chicago_5yr4hr	INTENSITY	5 min.

Name	Area	Width	%Imperv	%Slope Rain Gage	Outlet
S1	24.14	470.00	0.00	0.6800 Chicago 100yr24hr	SU-2Post
-					
S10	0.36	20.00	0.00	1.0000 Chicago_100yr24hr	West_Pond
S11	1.41	120.00	10.00	1.1000 Chicago_100yr24hr	West_Pond
S12	0.79	80.00	15.00	0.9000 Chicago_100yr24hr	West_Pond
S13	6.38	301.00	25.00	1.3000 Chicago_100yr24hr	J1
S14	0.61	15.00	0.00	0.5000 Chicago_100yr24hr	East_Pond
S15	1.34	80.00	25.00	0.9000 Chicago_100yr24hr	East_Pond
S2	38.61	422.00	0.00	1.2000 Chicago 100yr24hr	SU-2Post

S3	2.78	120.00	15.00	0.5700 Chicago_100yr24hr	West_Pond
S 4	3.09	410.00	20.00	1.3600 Chicago_100yr24hr	SU-2Post
S5	11.55	409.00	1.00	1.3200 Chicago_100yr24hr	SU-2Post
S6	1.43	100.00	15.00	1.1000 Chicago_100yr24hr	J1
S7	2.45	87.00	15.00	1.0000 Chicago_100yr24hr	East_Pond
S8	2.84	151.00	40.00	2.1000 Chicago_100yr24hr	East_Pond
S9	1.86	140.00	15.00	0.9000 Chicago_100yr24hr	J1

Name	Type	Invert Elev.	Max. Depth	Ponded Area	External Inflow
J1	JUNCTION	841.70	4.30	0.0	
OF1	OUTFALL	844.70	0.00	0.0	
East_Pond	STORAGE	842.02	3.66	0.0	
SU-2Post	STORAGE	845.20	0.60	0.0	
West Pond	STORAGE	842.59	3.21	0.0	

Name	From Node	To Node	Туре	Length	%Slope Roughness
C1 C2	East_Pond West Pond	J1 J1	CONDUIT CONDUIT	159.5 52.2	0.2194 0.0100 1.7013 0.0130
P1	J1	SU-2Post	TYPE2 PUMP	02.12	1.7010
W1	West_Pond	SU-2Post	WEIR		
W2	SU-2Post	OF1	WEIR		

Conduit	Shape	Full Depth		-		No. of Barrels	
C1	CIRCULAR	0.15	0.02	0.04	0.15	1	0.01

C2 CIRCULAR 0.45 0.16 0.11 0.45 1 0.37

***** Analysis Options ***** Flow Units CMS Process Models: Rainfall/Runoff YES RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method GREEN AMPT Flow Routing Method DYNWAVE Surcharge Method EXTRAN Starting Date 03/28/2024 00:00:00 Ending Date 03/29/2024 00:00:00 Antecedent Dry Days 0.0 Report Time Step 00:01:00 Wet Time Step 00:05:00 Dry Time Step 00:05:00 Routing Time Step 5.00 sec Variable Time Step YES Maximum Trials 8

Number of Threads 1

Head Tolerance 0.001500 m

* * * * * * * * * * * * * * * * * * * *	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm
* * * * * * * * * * * * * * * * * * * *		
Total Precipitation	11.972	120.146
Evaporation Loss	0.072	0.726
Infiltration Loss	6.506	65.292
Surface Runoff	5.107	51.253
Final Storage	0.305	3.057
Continuity Error (%)	-0.152	

******	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	5.107	51.071
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	3.816	38.163
Flooding Loss	0.125	1.251
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	1.163	11.629
Continuity Error (%)	0.054	

None

All links are stable.

Convergence obtained at all time steps.

Routing Time Step Summary ***********

Minimum Time Step : 0.34 sec Average Time Step : 5.00 sec Maximum Time Step 5.00 sec % of Time in Steady State 0.00 Average Iterations per Step: 2.01 % of Steps Not Converging : 0.01 Time Step Frequencies 5.000 - 3.155 sec 99.99 % 3.155 - 1.991 sec 0.01 % 1.991 - 1.256 sec 0.01 % 1.256 - 0.792 sec 0.00 % 0.792 - 0.500 sec 0.00 %

	Total	Total	Total	Total	Imperv	Perv	Total	Total
Peak Runoff					-			
- 66 - 66	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	Runoff
Runoff Coeff Subcatchment	mm	mm	mm	mm	mm	mm	mm	10^6 ltr
CMS	пши	Ш	Hutt	Hutt	Ittiti	Hull	пшп	10 0 101
						4.5.00		
S1 0.79 0.385	120.15	0.00	0.74	69.87	0.00	46.23	46.23	11.16
s10	120.15	0.00	0.67	67.26	0.00	52.49	52.49	0.19
0.04 0.437								
S11	120.15	0.00	0.67	59.69	11.86	48.29	60.16	0.85
0.32 0.501	100 15	0.00	0 60	F.C. 0.4	17 00	45.70	62.60	0 50
S12 0.22 0.529	120.15	0.00	0.69	56.24	17.80	45.79	63.60	0.50
S13	120.15	0.00	0.71	49.19	29.84	40.72	70.56	4.50
1.94 0.587								
S14	120.15	0.00	0.74	69.63	0.00	48.37	48.37	0.29
0.03 0.403 S15	120.15	0.00	0.74	50.02	29.83	39.88	69.71	0.93
0.41 0.580	120.13	0.00	0./4	30.02	29.03	39.00	09.11	0.95
S2	120.15	0.00	0.74	70.08	0.00	44.19	44.19	17.06
1.01 0.368								

S3	0 500	120.15	0.00	0.71	56.88	17.86	44.85	62.71	1.74
0.52 S4	0.522	120.15	0.00	0.66	51.62	23.74	44.68	68.42	2.11
1.26	0.569								
S5		120.15	0.00	0.72	68.08	1.18	50.31	51.50	5.95
0.78	0.429								
S 6	0 410	120.15	0.00	0.78	60.08	17.89	32.50	50.39	0.72
0.20	0.419								
S7		120.15	0.00	0.70	56.69	17.81	45.06	62.87	1.54
0.47	0.523								
S8		120.15	0.00	0.65	36.97	46.40	35.17	81.58	2.32
1.34	0.679								
S 9		120.15	0.00	0.66	55.55	17.81	46.40	64.21	1.20
0.47	0.534								

National Mariana Mariana S. Mariana S. Mariana

Node	Туре	Average Depth Meters	Maximum Depth Meters	Maximum HGL Meters	Occu	of Max rrence hr:min	Reported Max Depth Meters
J1	JUNCTION	2.90	4.30	846.00	0	07:11	4.30
OF1	OUTFALL	0.00	0.00	844.70	0	00:00	0.00
East_Pond	STORAGE	1.71	2.70	844.72	1	00:00	2.70
SU-2Post	STORAGE	0.31	0.49	845.69	0	07:49	0.49
West Pond	STORAGE	2.12	3.17	845.76	0	10:52	3.17

Maximum Maximum Lateral Total Flow
Lateral Total Time of Max Inflow Inflow Balance
Inflow Inflow Occurrence Volume Volume Error

J1	JUNCTION	2.612	2.612	0	07:15	6.42	7.17	0.120
OF1	OUTFALL	0.000	2.678	0	07:49	0	38.2	0.000
East_Pond	STORAGE	2.242	2.270	0	07:15	5.09	6.23	0.223
SU-2Post	STORAGE	3.124	3.142	0	07:15	36.3	38.5	0.000
West_Pond	STORAGE	1.098	1.722	0	07:15	3.28	6.6	0.246

Node Surcharge Summary

Surcharging occurs when water rises above the top of the highest conduit.

			Max. Height	Min. Depth
		Hours	Above Crown	Below Rim
Node	Type	Surcharged	Meters	Meters
J1	JUNCTION	19.40	3.850	0.000

Node Flooding Summary

Flooding refers to all water that overflows a node, whether it ponds or not.

				Total	Maximum
		Maximum	Time of Max	Flood	Ponded
	Hours	Rate	Occurrence	Volume	Depth
Node	Flooded	CMS	days hr:min	10^6 ltr	Meters
J1	0.91	1.932	0 07:15	1.251	0.000

Storage Volume Summary

Average Avg Evap Exfil Maximum Max Time of Max Maximum

Volume Pcnt Pcnt Volume Pcnt Occurrence Outflow

Storage Unit	1000 m³	Full	Loss	Loss	1000 m³	Full	days hr:min	CMS
East_Pond	3.630	33.9	0.0	0.0	6.211	58.1	1 00:00	0.003
SU-2Post	0.466	8.2	0.0	0.0	1.660	29.2	0 07:49	2.678
West_Pond	3.642	61.7	0.0	0.0	5.739	97.2	0 10:52	0.087

	Flow Freq	Avg Flow	Max Flow	Total Volume
Outfall Node	Pcnt	CMS	CMS	10^6 ltr
OF1	75.42	0.586	2.678	38.163
System	75.42	0.586	2.678	38.163

Maximum Time of Max Maximum Max/ Max/ |Flow| Occurrence Full Full |Veloc| CMS days hr:min Link Type m/sec Flow Depth C1 3.15 CONDUIT 0.029 0 07:11 1.66 1.00 C2 0.665 0 07:11 1.00 CONDUIT 4.18 1.79 Р1 PUMP 0.018 0 03:53 1.00 W1WEIR 0.087 0 10:52 0.28 W2 2.678 0 07:49 0.93 WEIR

	Adjusted			ion of	_		 -	
Conduit	/Actual Length	Dry	Up Dry	Sub Crit	-	-		Inlet Ctrl
C1 C2	1.00	0.12		 0.84			 	

Hours Hours ----- Hours Full -----Above Full Capacity Conduit Both Ends Upstream Dnstream Normal Flow Limited C1 18.45 18.45 19.82 18.50 0.01 C2 16.86 16.86 19.40 0.95 0.01

Pumping Summary

Min Avg Max Total Power % Time Off Percent Number of Flow Flow Flow Volume Usage Pump Curve Pump Utilized Start-Ups CMS CMS CMS 10^6 ltr Kw-hr Low High Р1 99.95 1 0.00 0.02 0.02 1.445 3.57 0.0 70.1

Analysis begun on: Wed Apr 17 22:55:49 2024 Analysis ended on: Wed Apr 17 22:55:49 2024

Total elapsed time: < 1 sec

TITLE

Project Title/Notes

North Chin Residential Development

OPTIONS

Opt	cion	Value
FLOW_	UNITS	CMS

INFILTRATION GREEN_AMPT FLOW_ROUTING DYNWAVE LINK OFFSETS ELEVATION

MIN_SLOPE 0
ALLOW_PONDING NO
SKIP_STEADY_STATE NO

START DATE 03/28/2024 START TIME 00:00:00 REPORT START DATE 03/28/2024 REPORT_START_TIME 00:00:00 END DATE 03/29/2024 END TIME 00:00:00 SWEEP START 01/01 SWEEP END 12/31 DRY DAYS REPORT STEP 00:01:00 WET STEP 00:05:00

DRY_STEP 00:05:00 ROUTING STEP 5

RULE_STEP 00:00:00

INERTIAL_DAMPING PARTIAL NORMAL FLOW LIMITED BOTH FORCE_MAIN_EQUATION H - MVARIABLE STEP 0.75 LENGTHENING STEP 0 MIN_SURFAREA MAX TRIALS HEAD TOLERANCE 0.0015 5 SYS_FLOW_TOL LAT_FLOW_TOL MINIMUM STEP 0.5 THREADS

EVAPORATION Data Source	Parameter	s									
	0.0 0.	0 1	2.5	3.9	4.7	5.4 4.	3	2.4	1	0.2	0.0
RAINGAGES Name	Format	Interval	SCF	Source							
Chicago_100yr24h Chicago_100yr4hh Chicago_5yr4hr	INTENSITY	0:05	1.0	TIMESER	IES Chi	cago_100y	r4hı				
SUBCATCHMENTS Name	Rain Gage	C	Outlet	A	rea	%Imperv	Wio	dth	%Slop	oe CurbLe	n SnowPack
S1	Chicago 1	 00vr24hr	SU-2Post	2	4.1421	0	470)	0.68	0	
S10	Chicago_1 Chicago_1 Chicago_1	00yr24hr	West Pond	0	.3644	0	20		1	0	
S11	Chicago 1	00yr24hr	West Pond	1	.4081	10	120)	1.1	0	
S12	Chicago 1	00yr24hr	West Pond	0	.7863	15	80		0.9	0	
S13	Chicago 1										
S14	Chicago_1						15		0.5	0	
S15	Chicago_1					25			0.9	0	
North Chin Resi											
S2	Chicago_1	00yr24hr	SU-2Post	38	8.6124	0	422	2	1.2	0	
S3	Chicago_1	00yr24hr	West_Pond	2	.7751	15	120)	0.57	0	
S4	Chicago_1	00yr24hr	SU-2Post	3	.0909	20	410	O	1.36	0	
S5			SU-2Post		1.5525	1		9			
S6	Chicago_1	00yr24hr	J1	1	.4285	15	100)	1.1	0	
s7	Chicago_1	00yr24hr	East_Pond	2	.4519	15	87		1	0	
S8	Chicago_1	00yr24hr	East_Pond East_Pond J1	2	.8421	40	151	1	2.1	0	
S9	Chicago_1	00yr24hr	J1	1	.8637	15	140)	0.9	0	
CIDADEAC											
SUBAREAS Subcatchment	N-Imperv	N-Perv	S-Impe	erv S-1	Perv	Pct ero		Route	То	PctRouted	
S1	0.015 0.015	0.2	0.93	5		25		OUTLE	 Т		
S10	0.015	0.15	5	5		0		OUTLE	Т		
S11	0.015	0.15	0.73	5		25		OUTLE	T		
S12	0.015	0.15	0.81	5		25		OUTLE	Т		

S13	0.015	0 15	0.81	3 81		25	OUTLET	
S14	0.015		2	5		25	OUTLET	
S15	0.015		0.81	5		25	OUTLET	
S2	0.015 0.015	0.13	1	5		25	OUTLET	
S3	0.015	0.15	1.01			10	OUTLET	
S4	0.015	0.15	0.66			25	OUTLET	
S5	0.015		1	5		25	OUTLET	
S 6		3.81	0.15	0.73		10		
S7	0 015	0 15	1.29	3.81			OUTLET	
\$8	0.015	0.15	4.2	0.54		10 5	OUTLET	
S 9	0.015	0.15	0.81	3.81		15	OUTLET	
INFILTRATION								
Subcatchment	Param1	Param2	Param3	Param	4	Param	5	
S1			0.262			0		
S10	172.973	1.95	0.262	0		0		
S11	172.973	1.95	0.262 0.262	0		0		
S12	172.973	1.95	0.262	0		0		
S13		1.95				0		
S14			0.262			0		
S15			0.262			0		
S2	172.97 172.973 172.973 172.973	1.95		0		0		
S3	172.973	1.95	0.262	0		0		
S4	172.973	1.95		0		0		
S5						0		
S6			0.262			0		
S7	172.973	1.95	0.262	0		0		
S8	172.973 172.973	1.95	0.262	0		0		
S9	172.973	1.95	0.262	0		0		
JUNCTIONS								
Name	Elevation	MayDenth	InitDepth	SurDo	nth	Anond	ed	
		maxbepth						
J1	841.7	4.3	0	0		0		
J2		3.8				0		
				-		-		
OUTFALLS								
Name	Elevation	Type	Stage Data		Gate	d R	oute To	
OF1	844.7	FREE			NO			

STORAGE Name Ksat IMD	Elev. Ma	xDepth 1	InitDepth	Sha	pe 	Curv	e Name	e/Pa:	rams		S1	urDept	h Fevap	Psi
1 1 1 0 0 0 4 1														
East_Pond	ur Post Develop 842 3.	68 ()	TAB	ULAR	East	_Pond	_Fina	al		0		0	
1:100yr 24hor SU-2Post	ur Post Develop 845.2 0.	ment 6 ()	TAB	ULAR	SU-2	Post ?				0		0	
1:100yr 24ho	ur Post Develop						,						0	
West_Pond	842.588 3.	212 ()	TAB	ULAR	West	_pond_	_Fina	al		0		0	
	From Node	To 1	Node		_		_			et C)utOff:	set I	nitFlow	MaxFlow
C1	East_Pond				56.8				842)	0
C2	West_Pond	J1			52.204									0
C3	J2	Ј1			133.382	0.	013	;	841.77	8	341.7	0)	0
PUMPS														
Name	From Node				Pump Cur									
P1	J1		2Post											
WEIRS														
	From Node				Туре		Crest	Нt	Qcoef	f	Gate	d E	IndCon	EndCoeff
Surcharge Ro	adWidth RoadSu 	ri Coeii 	t. Curve 											
	Mark David					D 3 I	045 7		2 22		VE C	0		0
W1 YES	West_Pond	SU-2	ZPOST		TRAPE OI	DAL	845./		3.33		YES	0)	0
W2	SU-2Post	OF1			TRANSVER	SE	845.5		3.33		NO	0)	0
YES														
XSECTIONS														
Link	Shape	Geom1		Geom	.2 G	eom3	(Geom	4	Barre	els	Culve	ert	
C1	CIRCULAR	0.25		0				 0		1				
C2	CIRCULAR			0	0			0		1				
C3		0.25		0	0			0		1				

W1 W2	TRAPE OIDA		2	0	0 5	0 5
LOSSES Link	Kentry	Kexit	Kavg	Flap	Gate	Seepage
CURVES Name	Type	X-Value		_		
18 litres per s 18L_per-sec 18L_per-sec 18L_per-sec	second pump		0 0.018 0.018			
9 litres per se 91_per-sec 91_per-sec 91_per-sec		0 0.4 2.6	0 0.009 0.009			
dtich-storage dtich-storage	Storage	0 1	1500 10000			
East_Pond_Final East_Pond_Final East_Pond_Final East_Pond_Final East_Pond_Final East_Pond_Final East_Pond_Final East_Pond_Final	Storage	0 0.6 1 1.4 2 3 3.4 3.68	783 1395 1840 2306 3045 4381 4940 5774			
East trapped lo SU1-pond SU1-pond SU1-pond SU1-pond SU1-pond SU1-pond SU1-pond SU1-pond	w Storage	0 0.1 0.5 0.9 1.5 1.9 2.1 2.46	3641 4176 4455			

SU1-pond	2.86	5000
West trapped low		
SU-2Post Storage	0	100
SU-2Post	0.4	3039
SU-2Post	0.57	38189
SU-2Post	0.6	66022
SU-2Post	0.65	91758
West pond Final Storage	0	240
West pond Final	0.2	394
West pond Final	0.6	740
West pond Final	1	1115
West pond Final	1.4	1525
West pond Final	2	2200
	2.6	2950
West pond Final	3	3475
West_pond_Final	3.19	3747
WEST-POND9acre Storage	0	2
WEST-POND9acre	1	2
WEST-POND9acre	1.15	150
WEST-POND9acre	1.412	483
WEST-POND9acre	2	933
WEST-POND9acre	3	1982
WEST-POND9acre	3.9	3211
WEST-POND9acre	4.2	3630
TIMESERIES		
Name Date	Time	Value
Chicago design storm, a		0, c 0.731, Duration 1440 minutes, r 0.3, rain units mm/hr.
Chicago_100yr24hr	0:00	1.352
Chicago_100yr24hr	0:05	1.364
Chicago_100yr24hr	0:10	1.376
Chicago_100yr24hr	0:15	1.388
Chicago_100yr24hr	0:20	1.4
Chicago_100yr24hr	0:25	1.413
Chicago_100yr24hr	0:30	1.426
Chicago_100yr24hr	0:35	1.439
Chicago_100yr24hr	0:40	1.453

Chicago_100yr24hr	0:45	1.466
Chicago_100yr24hr	0:50	1.48
Chicago_100yr24hr	0:55	1.495
Chicago_100yr24hr	1:00	1.51
Chicago_100yr24hr	1:05	1.525
Chicago_100yr24hr	1:10	1.54
Chicago_100yr24hr	1:15	1.556
Chicago_100yr24hr	1:20	1.572
Chicago_100yr24hr	1:25	1.589
Chicago_100yr24hr	1:30	1.606
Chicago_100yr24hr	1:35	1.624
Chicago_100yr24hr	1:40	1.641
Chicago_100yr24hr	1:45	1.66
Chicago_100yr24hr	1:50	1.679
Chicago_100yr24hr	1:55	1.698
Chicago_100yr24hr	2:00	1.718
Chicago_100yr24hr	2:05	1.739
Chicago_100yr24hr	2:10	1.76
Chicago_100yr24hr	2:15	1.782
Chicago_100yr24hr	2:20	1.804
Chicago_100yr24hr	2:25	1.828
Chicago_100yr24hr	2:30	1.851
Chicago_100yr24hr	2:35	1.876
Chicago_100yr24hr	2:40	1.901
Chicago_100yr24hr	2:45	1.928
Chicago_100yr24hr	2:50	1.955
Chicago_100yr24hr	2:55	1.983
Chicago_100yr24hr	3:00	2.012
Chicago_100yr24hr	3:05	2.042
Chicago_100yr24hr	3:10	2.073
Chicago_100yr24hr	3:15	2.105
Chicago_100yr24hr	3:20	2.138
Chicago_100yr24hr	3:25	2.173
Chicago_100yr24hr	3:30	2.209
Chicago_100yr24hr	3:35	2.247
Chicago_100yr24hr	3:40	2.286
Chicago_100yr24hr	3:45	2.326
Chicago_100yr24hr	3:50	2.369
Chicago_100yr24hr	3:55	2.413
Chicago_100yr24hr	4:00	2.46
Chicago_100yr24hr	4:05	2.508

Chicago_100yr24hr	4:10	2.559
Chicago_100yr24hr	4:15	2.612
Chicago_100yr24hr	4:20	2.669
Chicago 100yr24hr	4:25	2.728
Chicago_100yr24hr	4:30	2.79
Chicago_100yr24hr	4:35	2.856
Chicago_100yr24hr	4:40	2.925
Chicago_100yr24hr	4:45	2.999
Chicago_100yr24hr	4:50	3.077
Chicago_100yr24hr	4:55	3.16
Chicago_100yr24hr	5:00	3.249
Chicago_100yr24hr	5:05	3.344
Chicago_100yr24hr	5:10	3.446
Chicago_100yr24hr	5:15	3.555
Chicago_100yr24hr	5:20	3.673
Chicago_100yr24hr	5:25	3.801
Chicago_100yr24hr	5:30	3.939
Chicago_100yr24hr	5:35	4.091
Chicago_100yr24hr	5:40	4.257
Chicago_100yr24hr	5:45	4.44
Chicago_100yr24hr	5:50	4.642
Chicago_100yr24hr	5:55	4.868
Chicago_100yr24hr	6:00	5.122
Chicago_100yr24hr	6:05	5.409
Chicago_100yr24hr	6:10	5.738
Chicago_100yr24hr	6:15	6.119
Chicago_100yr24hr	6:20	6.565
Chicago_100yr24hr	6:25	7.098
Chicago_100yr24hr	6:30	7.745
Chicago_100yr24hr	6:35	8.553
Chicago_100yr24hr	6:40	9.594
Chicago_100yr24hr	6:45	10.997
Chicago_100yr24hr	6:50	13.01
Chicago_100yr24hr	6:55	16.203
Chicago_100yr24hr	7:00	22.264
Chicago_100yr24hr	7:05	40.822
Chicago_100yr24hr	7:10	314.277
Chicago_100yr24hr	7:15	62.374
Chicago_100yr24hr	7:20	38.336
Chicago_100yr24hr	7:25	28.645
Chicago_100yr24hr	7:30	23.295

Chicago_100yr24hr	7:35	19.837
Chicago_100yr24hr	7:40	17.393
Chicago_100yr24hr	7:45	15.56
Chicago_100yr24hr	7:50	14.128
Chicago_100yr24hr	7:55	12.973
Chicago_100yr24hr	8:00	12.02
Chicago_100yr24hr	8:05	11.217
Chicago_100yr24hr	8:10	10.531
Chicago_100yr24hr	8:15	9.937
Chicago_100yr24hr	8:20	9.416
Chicago_100yr24hr	8:25	8.956
Chicago_100yr24hr	8:30	8.545
Chicago_100yr24hr	8:35	8.177
Chicago_100yr24hr	8:40	7.844
Chicago_100yr24hr	8:45	7.542
Chicago_100yr24hr	8:50	7.265
Chicago_100yr24hr	8:55	7.012
Chicago_100yr24hr	9:00	6.778
Chicago_100yr24hr	9:05	6.563
Chicago_100yr24hr	9:10	6.362
Chicago_100yr24hr	9:15	6.176
Chicago_100yr24hr	9:20	6.002
Chicago_100yr24hr	9:25	5.839
Chicago_100yr24hr	9:30	5.687
Chicago_100yr24hr	9:35	5.543
Chicago_100yr24hr	9:40	5.408
Chicago_100yr24hr	9:45	5.28
Chicago_100yr24hr	9:50	5.159
Chicago_100yr24hr	9:55	5.045
Chicago_100yr24hr	10:00	4.936
Chicago_100yr24hr	10:05	4.833
Chicago_100yr24hr	10:10	4.735
Chicago_100yr24hr	10:15	4.641
Chicago_100yr24hr	10:20	4.552
Chicago_100yr24hr	10:25	4.466
Chicago_100yr24hr	10:30	4.385
Chicago_100yr24hr	10:35	4.307
Chicago_100yr24hr	10:40	4.231
Chicago_100yr24hr	10:45	4.159
Chicago_100yr24hr	10:50	4.09
Chicago_100yr24hr	10:55	4.024

Chicago_100yr24hr	11:00	3.96
Chicago_100yr24hr	11:05	3.898
Chicago_100yr24hr	11:10	3.839
Chicago_100yr24hr	11:15	3.781
Chicago_100yr24hr	11:20	3.726
Chicago_100yr24hr	11:25	3.673
Chicago_100yr24hr	11:30	3.621
Chicago_100yr24hr	11:35	3.571
Chicago_100yr24hr	11:40	3.523
Chicago_100yr24hr	11:45	3.476
Chicago_100yr24hr	11:50	3.43
Chicago_100yr24hr	11:55	3.386
Chicago 100yr24hr	12:00	3.344
Chicago 100yr24hr	12:05	3.302
Chicago 100yr24hr	12:10	3.262
Chicago_100yr24hr	12:15	3.223
Chicago_100yr24hr	12:20	3.185
Chicago 100yr24hr	12:25	3.148
Chicago 100yr24hr	12:30	3.112
Chicago_100yr24hr	12:35	3.077
Chicago_100yr24hr	12:40	3.043
Chicago_100yr24hr	12:45	3.01
Chicago 100yr24hr	12:50	2.977
Chicago 100yr24hr	12:55	2.946
Chicago_100yr24hr	13:00	2.915
Chicago_100yr24hr	13:05	2.885
Chicago_100yr24hr	13:10	2.856
Chicago 100yr24hr	13:15	2.827
Chicago 100yr24hr	13:20	2.799
Chicago_100yr24hr	13:25	2.772
Chicago_100yr24hr	13:30	2.745
Chicago_100yr24hr	13:35	2.719
Chicago 100yr24hr	13:40	2.693
Chicago_100yr24hr	13:45	2.669
Chicago_100yr24hr	13:50	2.644
Chicago_100yr24hr	13:55	2.62
Chicago 100yr24hr	14:00	2.597
Chicago 100yr24hr	14:05	2.574
Chicago_100yr24hr	14:10	2.552
Chicago_100yr24hr	14:15	2.53
Chicago 100yr24hr	14:20	2.508
5		

Chicago_100yr24hr	14:25	2.487
Chicago_100yr24hr	14:30	2.466
Chicago 100yr24hr	14:35	2.446
Chicago 100yr24hr	14:40	2.426
Chicago 100yr24hr	14:45	2.420
Chicago_100yr24hr	14:50	2.388
Chicago_100yr24hr	14:55	2.369
Chicago 100yr24hr	15:00	2.35
Chicago 100yr24hr	15:05	2.33
Chicago 100yr24hr	15:10	2.315
Chicago_100yr24hr	15:15	2.297
	15:20	2.297
Chicago_100yr24hr Chicago 100yr24hr	15:25	2.263
Chicago 100yr24hr	15:30	2.247
Chicago_100yr24hr	15:35	2.247
	15:33	2.23
Chicago_100yr24hr	15:40 15:45	2.214
Chicago_100yr24hr	15:45	2.199
Chicago_100yr24hr		
Chicago_100yr24hr	15:55	2.168
Chicago_100yr24hr	16:00	2.153
Chicago_100yr24hr	16:05	2.138
Chicago_100yr24hr	16:10	2.124
Chicago_100yr24hr	16:15	2.11
Chicago_100yr24hr	16:20	2.095
Chicago_100yr24hr	16:25	2.082
Chicago_100yr24hr	16:30	2.068
Chicago_100yr24hr	16:35	2.055
Chicago_100yr24hr	16:40	2.042
Chicago_100yr24hr	16:45	2.029
Chicago_100yr24hr	16:50	2.016
Chicago_100yr24hr	16:55	2.003
Chicago_100yr24hr	17:00	1.991
Chicago_100yr24hr	17:05	1.979
Chicago_100yr24hr	17:10	1.966
Chicago_100yr24hr	17:15	1.955
Chicago_100yr24hr	17:20	1.943
Chicago_100yr24hr	17:25	1.931
Chicago_100yr24hr	17:30	1.92
Chicago_100yr24hr	17:35	1.909
Chicago_100yr24hr	17:40	1.898
Chicago_100yr24hr	17:45	1.887

Chicago_100yr24hr	17:50	1.876
Chicago_100yr24hr	17:55	1.865
Chicago_100yr24hr	18:00	1.855
Chicago_100yr24hr	18:05	1.844
Chicago_100yr24hr	18:10	1.834
Chicago_100yr24hr	18:15	1.824
Chicago_100yr24hr	18:20	1.814
Chicago_100yr24hr	18:25	1.804
Chicago_100yr24hr	18:30	1.795
Chicago_100yr24hr	18:35	1.785
Chicago_100yr24hr	18:40	1.776
Chicago_100yr24hr	18:45	1.766
Chicago_100yr24hr	18:50	1.757
Chicago_100yr24hr	18:55	1.748
Chicago 100yr24hr	19:00	1.739
Chicago_100yr24hr	19:05	1.73
Chicago_100yr24hr	19:10	1.721
Chicago 100yr24hr	19:15	1.713
Chicago 100yr24hr	19:20	1.704
Chicago_100yr24hr	19:25	1.696
Chicago_100yr24hr	19:30	1.687
Chicago_100yr24hr	19:35	1.679
Chicago 100yr24hr	19:40	1.671
Chicago 100yr24hr	19:45	1.663
Chicago_100yr24hr	19:50	1.655
Chicago_100yr24hr	19:55	1.647
Chicago_100yr24hr	20:00	1.639
Chicago 100yr24hr	20:05	1.631
Chicago_100yr24hr	20:10	1.624
Chicago_100yr24hr	20:15	1.616
Chicago_100yr24hr	20:20	1.608
Chicago_100yr24hr	20:25	1.601
Chicago 100yr24hr	20:30	1.594
Chicago_100yr24hr	20:35	1.587
Chicago_100yr24hr	20:40	1.579
Chicago_100yr24hr	20:45	1.572
Chicago 100yr24hr	20:50	1.565
Chicago 100yr24hr	20:55	1.558
Chicago 100yr24hr	21:00	1.551
Chicago_100yr24hr	21:05	1.545
Chicago 100yr24hr	21:10	1.538
3		

```
Chicago 100yr24hr
                             21:15
                                        1.531
Chicago 100yr24hr
                             21:20
                                        1.525
Chicago 100yr24hr
                             21:25
                                        1.518
Chicago 100yr24hr
                             21:30
                                        1.512
Chicago 100yr24hr
                             21:35
                                        1.505
Chicago 100yr24hr
                             21:40
                                        1.499
Chicago 100yr24hr
                             21:45
                                        1.493
Chicago 100yr24hr
                             21:50
                                        1.487
Chicago 100yr24hr
                             21:55
                                        1.48
Chicago 100yr24hr
                             22:00
                                        1.474
Chicago 100yr24hr
                             22:05
                                        1.468
Chicago 100yr24hr
                             22:10
                                        1.462
Chicago 100yr24hr
                             22:15
                                        1.456
Chicago 100yr24hr
                             22:20
                                        1.451
Chicago 100yr24hr
                             22:25
                                        1.445
Chicago 100yr24hr
                             22:30
                                        1.439
Chicago 100yr24hr
                             22:35
                                        1.433
Chicago 100yr24hr
                             22:40
                                        1.428
Chicago 100yr24hr
                             22:45
                                        1.422
Chicago 100yr24hr
                             22:50
                                        1.417
Chicago 100yr24hr
                             22:55
                                        1.411
Chicago 100yr24hr
                             23:00
                                        1.406
Chicago 100yr24hr
                             23:05
                                        1.4
Chicago 100yr24hr
                             23:10
                                        1.395
Chicago 100yr24hr
                             23:15
                                        1.39
Chicago 100yr24hr
                             23:20
                                        1.384
Chicago 100yr24hr
                             23:25
                                        1.379
Chicago 100yr24hr
                             23:30
                                        1.374
Chicago 100yr24hr
                             23:35
                                        1.369
Chicago 100yr24hr
                             23:40
                                        1.364
                             23:45
Chicago 100yr24hr
                                        1.359
Chicago 100yr24hr
                             23:50
                                        1.354
Chicago 100yr24hr
                             23:55
                                        1.349
Chicago 100yr24hr
                             24:00
                                        0
Chicago design storm, a
                           1019.2, b
                                       0, c
                                              0.731, Duration 240 minutes, r 0.3, rain units mm/hr.
Chicago 100yr4hr
                            0:00
                                       5.122
Chicago 100yr4hr
                            0:05
                                       5.409
Chicago 100yr4hr
                            0:10
                                       5.738
Chicago 100yr4hr
                            0:15
                                       6.119
Chicago 100yr4hr
                            0:20
                                       6.565
```

Chicago_100yr4hr	0:25	7.098
Chicago_100yr4hr	0:30	7.745
Chicago 100yr4hr	0:35	8.553
Chicago 100yr4hr	0:40	9.594
Chicago 100yr4hr	0:45	10.997
Chicago_100yr4hr	0:50	13.01
Chicago_100yr4hr	0:55	16.203
Chicago 100yr4hr	1:00	22.264
Chicago 100yr4hr	1:05	40.822
Chicago_100yr4hr	1:10	314.277
Chicago_100yr4hr	1:15	62.374
Chicago_100yr4hr	1:20	38.336
Chicago 100yr4hr	1:25	28.645
Chicago 100yr4hr	1:30	23.295
Chicago_100yr4hr	1:35	19.837
Chicago_100yr4hr	1:40	17.393
Chicago_100yr4hr	1:45	15.56
Chicago_100yr4hr	1:50	14.128
Chicago 100yr4hr	1:55	12.973
Chicago_100yr4hr	2:00	12.973
	2:05	11.217
Chicago_100yr4hr	2:10	10.531
Chicago_100yr4hr	2:10	9.937
Chicago_100yr4hr Chicago 100yr4hr	2:13	9.937
Chicago 100yr4hr	2:25	8.956
	2:23	8.545
Chicago_100yr4hr	2:30	8.177
Chicago_100yr4hr		7.844
Chicago_100yr4hr Chicago 100yr4hr	2:40 2:45	7.844
Chicago 100yr4hr		7.265
	2:50	
Chicago_100yr4hr	2:55	7.012
Chicago_100yr4hr	3:00	6.778
Chicago_100yr4hr	3:05	6.563
Chicago_100yr4hr	3:10	6.362
Chicago_100yr4hr	3:15	6.176
Chicago_100yr4hr	3:20	6.002
Chicago_100yr4hr	3:25	5.839
Chicago_100yr4hr	3:30	5.687
Chicago_100yr4hr	3:35	5.543
Chicago_100yr4hr	3:40	5.408
Chicago_100yr4hr	3:45	5.28

```
Chicago 100yr4hr
                            3:50
                                       5.159
Chicago 100yr4hr
                            3:55
                                       5.045
Chicago 100yr4hr
                            4:00
                                       0
Chicago design storm, a
                                       0, c
                                              0.696, Duration 240 minutes, r 0.3, rain units mm/hr.
                           440.69, b
Chicago 5yr4hr
                            0:00
                                       3.028
Chicago 5yr4hr
                            0:05
                                       3.19
Chicago 5yr4hr
                            0:10
                                       3.374
Chicago 5yr4hr
                            0:15
                                       3.587
Chicago 5yr4hr
                            0:20
                                       3.836
Chicago 5yr4hr
                            0:25
                                       4.131
Chicago 5yr4hr
                            0:30
                                       4.489
Chicago 5yr4hr
                            0:35
                                       4.934
Chicago 5yr4hr
                            0:40
                                       5.504
Chicago 5yr4hr
                            0:45
                                       6.268
Chicago 5yr4hr
                            0:50
                                       7.356
Chicago 5yr4hr
                            0:55
                                       9.064
Chicago 5yr4hr
                            1:00
                                       12.265
Chicago 5yr4hr
                            1:05
                                       21.818
Chicago 5yr4hr
                            1:10
                                       143.764
Chicago 5yr4hr
                            1:15
                                       32.694
Chicago 5yr4hr
                            1:20
                                       20.578
Chicago 5yr4hr
                            1:25
                                       15.594
Chicago 5yr4hr
                            1:30
                                       12.808
Chicago 5yr4hr
                            1:35
                                       10.992
Chicago 5yr4hr
                            1:40
                                       9.698
Chicago 5yr4hr
                            1:45
                                       8.723
                                       7.957
Chicago 5yr4hr
                            1:50
Chicago 5yr4hr
                            1:55
                                       7.336
Chicago 5yr4hr
                            2:00
                                       6.822
Chicago 5yr4hr
                            2:05
                                       6.388
Chicago 5yr4hr
                            2:10
                                       6.015
Chicago 5yr4hr
                            2:15
                                       5.691
Chicago 5yr4hr
                            2:20
                                       5.407
Chicago 5yr4hr
                            2:25
                                       5.155
Chicago 5yr4hr
                            2:30
                                       4.93
Chicago 5yr4hr
                            2:35
                                       4.727
Chicago 5yr4hr
                            2:40
                                       4.544
Chicago 5yr4hr
                            2:45
                                       4.377
Chicago 5yr4hr
                            2:50
                                       4.224
Chicago 5yr4hr
                            2:55
                                       4.084
```

Chicago_5yr4hr	3:00	3.954
Chicago_5yr4hr	3:05	3.834
Chicago_5yr4hr	3:10	3.723
Chicago_5yr4hr	3:15	3.619
Chicago_5yr4hr	3:20	3.522
Chicago_5yr4hr	3:25	3.431
Chicago_5yr4hr	3:30	3.345
Chicago_5yr4hr	3:35	3.265
Chicago_5yr4hr	3:40	3.189
Chicago_5yr4hr	3:45	3.117
Chicago_5yr4hr	3:50	3.049
Chicago_5yr4hr	3:55	2.985
Chicago_5yr4hr	4:00	0

REPORT

Reporting Options

INPUT YES

CONTROLS NO

SUBCATCHMENTS ALL

NODES ALL

LINKS ALL

TAGS

MAP

DIMENSIONS 394895.55185 5513108.81825 396150.96315 5514452.59475

UNITS Meters

COORDINATES

COORDINIIID		
Node	X-Coord	Y-Coord
J1	395781.885	5513556.779
J2	395915.201	5513559.565
OF1	395208.833	5513453.191
East_Pond	395930.669	5513614.203
SU-2Post	395317.166	5513485.043
West_Pond	395730.066	5513550.567
VERTICES		
Link	X-Coord	Y-Coord

P1 P1	395573.954 395393.224	5513546.571 5513512.538
POLYGONS Subcatchment	X-Coord	Y-Coord
S1	395599.522	5514372.505
S1	395871.684	5514295.036
S1	395978.715	5514202.276
S1	396093.899	5514197.18
S1	396085.99	5513785.849
S1	395782.22	5513791.586
S1	395654.774	5513795.337
S1	395652.197	5513810.585
S1	395632.025	5513834.614
S1	395603.103	5513931.946
S1	395597.648	5514061.498
S1	395581.284	5514141.957
S1	395603.103	5514211.505
S1	395579.92	5514339.694
S1	395599.522	5514372.505
S10	395776.259	5513525.777
S10	395645.704	5513528.397
S10	395646.693	5513556.649
S10	395776.974	5513553.34
S10	395776.259	5513525.777
S11	395772.714	5513419.022
S11	395672.936	5513422.676
S11	395652.187	5513401.927
S11	395644.081	5513422.982
S11	395644.04	5513484.421
S11	395645.704	5513528.397
S11	395776.259	5513525.777
S11	395772.714	5513419.022
S12	395782.22	5513791.577
S12	395893.808	5513789.045
S12	395891.483	5513720.142
S12	395809.599	5513721.986
S12	395781.993	5513705.422
S12	395782.22	5513791.577
S13	395797.283	5513418.206

S13	396074.493	5513408.976
S13	396068.278	5513169.899
S13	395791.35	5513197.647
S13	395791.596	5513206.485
S13	395791.764	5513212.553
S13	395791.972	5513220.022
S13	395797.283	5513418.206
S14	396080.747	5513602.091
S14	396080.747	5513581.119
S14	395914.84	5513586.108
S14	395916.271	5513623.17
S14	396081.141	5513617.59
S14	396080.747	5513602.091
S15	395893.808	5513789.036
S15	396015.946	5513786.847
S15	396085.99	5513785.84
S15	396083.197	5513715.053
S15	395891.453	5513720.143
S15	395893.808	5513789.036
S2	395604.451	5514212.918
S2	395584.294	5514142.685
S2	395601.651	5514053.732
S2	395599.481	5513934.406
S2	395632.025	5513834.605
S2	395652.197	5513810.576
S2	395669.905	5513705.741
S2	395667.505	5513595.866
S2	395646.586	5513551.692
S2	395640.488	5513550.335
S2	395245.84	5513462.523
S2	395248.54	5513772.393
S2	395196.719	5513807.849
S2	395196.719	5513923.764
S2	395195.355	5514152.866
S2	395161.263	5514171.958
S2	394963.526	5514180.14
S2	394952.616	5514238.78
S2	395067.167	5514335.603
S2	395061.712	5514380.605
S2	395129.898	5514391.514
S2	395354.909	5514384.696

S2	395414.912	5514300.146
S2	395579.92	5514342.421
S2	395604.451	5514212.918
S3	395756.815	5513792.433
S3	395782.22	5513791.586
S3	395782.444	5513725.111
S3	395782.444	5513717.376
S3	395781.742	5513706.677
S3	395776.974	5513553.34
S3	395646.693	5513556.658
S3	395667.505	5513595.857
S3	395669.905	5513705.732
S3	395669.043	5513705.309
S3	395654.774	5513795.328
S3	395733.797	5513793.2
S3	395756.815	5513792.433
S4	395797.283	5513418.206
S4	395797.483	5513418.199
S4	395791.35	5513197.647
S4	395645.634	5513212.999
S4	395646.18	5513247.945
S4	395659.285	5513269.787
S4	395648.91	5513280.707
S4	395652.187	5513401.927
S4	395672.936	5513422.676
S4	395797.283	5513418.206
S5	395646.586	5513551.692
S5	395644.04	5513484.421
S5	395644.081	5513422.982
S5	395653.279	5513402.473
S5	395652.187	5513401.927
S5	395646.726	5513282.892
S5	395658.739	5513268.695
S5	395646.726	5513250.676
S5	395645.088	5513212.453
S5	395263.025	5513223.877
\$5	395258.138	5513259.06
\$5	395244.456	5513288.378
S5	395245.84	5513462.523
S5	395646.586	5513551.692
S 6	395866.153	5513720.721

S6	395865.064	5513552.053
S 6	395867.352	5513552.011
S6	395848.759	5513552.284
S6	395818.512	5513552.729
S6	395776.974	5513553.34
S6	395781.993	5513705.422
S6	395809.599	5513721.986
S 6	395866.153	5513720.721
s7	396083.197	5513715.053
S7	396081.141	5513617.59
s7	395916.271	5513623.17
s7	395913.497	5513551.332
S7	395865.065	5513552.062
S7	395865.339	5513594.539
S7	395866.153	5513720.73
S7	396083.197	5513715.053
S8	396074.493	5513408.976
S8	395910.745	5513414.438
S8	395913.497	5513551.332
S8	395914.84	5513586.108
S8	396080.747	5513581.119
S8	396074.493	5513408.976
S 9	395913.497	5513551.332
S9	395910.745	5513414.438
S9	395772.714	5513419.022
S9	395776.974	5513553.34
S 9	395913.497	5513551.332
Storage Node	X-Coord	Y-Coord
SYMBOLS		
Gage	X-Coord	Y-Coord

APPENDIX E

Property Ownership

LAND TITLE CERTIFICATE

s

LINC SHORT LEGAL TITLE NUMBER

0020 647 658 899AA;7;1,2 26D73B

LEGAL DESCRIPTION

PLAN 899AA

BLOCK 7

LOTS 1 AND 2

EXCEPTING THEREOUT ALL MINES AND MINERALS

ESTATE: FEE SIMPLE

ATS REFERENCE: 4;19;9;25;E

MUNICIPALITY: LETHBRIDGE COUNTY

REGISTERED OWNER(S)

REGISTRATION DATE (DMY) DOCUMENT TYPE VALUE CONSIDERATION

26D73B . 20/04/1921 NOT EST-557DA

OWNERS

HER MAJESTY THE QUEEN IN RIGHT OF ALBERTA

OF C/O THE MINISTER OF SUSTAINABLE RESOURCE DEVELOPMENT

9915-108 STREET

EDMONTON

ALBERTA T5K 2C9

(DATA UPDATED BY: CHANGE OF ADDRESS 091061650)

ENCUMBRANCES, LIENS & INTERESTS

REGISTRATION

NUMBER DATE (D/M/Y) PARTICULARS

NO REGISTRATIONS

TOTAL INSTRUMENTS: 000

THE REGISTRAR OF TITLES CERTIFIES THIS TO BE AN ACCURATE REPRODUCTION OF THE CERTIFICATE OF TITLE REPRESENTED HEREIN THIS 6 DAY OF SEPTEMBER, 2023 AT 03:39 P.M.

ORDER NUMBER: 48267274

CUSTOMER FILE NUMBER:

END OF CERTIFICATE

THIS ELECTRONICALLY TRANSMITTED LAND TITLES PRODUCT IS INTENDED FOR THE SOLE USE OF THE ORIGINAL PURCHASER, AND NONE OTHER, SUBJECT TO WHAT IS SET OUT IN THE PARAGRAPH BELOW.

THE ABOVE PROVISIONS DO NOT PROHIBIT THE ORIGINAL PURCHASER FROM INCLUDING THIS UNMODIFIED PRODUCT IN ANY REPORT, OPINION, APPRAISAL OR OTHER ADVICE PREPARED BY THE ORIGINAL PURCHASER AS PART OF THE ORIGINAL PURCHASER APPLYING PROFESSIONAL, CONSULTING OR TECHNICAL EXPERTISE FOR THE BENEFIT OF CLIENT(S).

LAND TITLE CERTIFICATE

s

LINC SHORT LEGAL TITLE NUMBER

0020 647 640 899AA;6;31,32 77Z95 .

LEGAL DESCRIPTION

PLAN 899AA

BLOCK 6

LOTS 31 AND 32

EXCEPTING THEREOUT ALL MINES AND MINERALS

AND THE RIGHT TO WORK THE SAME

ESTATE: FEE SIMPLE

ATS REFERENCE: 4;19;9;25;E

MUNICIPALITY: LETHBRIDGE COUNTY

REGISTERED OWNER(S)

REGISTRATION DATE (DMY) DOCUMENT TYPE VALUE CONSIDERATION

77Z95 . 10/04/1948 TAX FOR-7883EX

OWNERS

HER MAJESTY THE QUEEN IN RIGHT OF ALBERTA
AS REPRESENTED BY MINISTER OF MUNICIPAL AFFAIRS
OF 9925-107 ST
EDMONTON

EDMONTO

ALBERTA

ENCUMBRANCES, LIENS & INTERESTS

REGISTRATION

NUMBER DATE (D/M/Y) PARTICULARS

NO REGISTRATIONS

TOTAL INSTRUMENTS: 000

THE REGISTRAR OF TITLES CERTIFIES THIS TO BE AN ACCURATE REPRODUCTION OF THE CERTIFICATE OF TITLE REPRESENTED HEREIN THIS 6 DAY OF SEPTEMBER, 2023 AT 03:39 P.M.

ORDER NUMBER: 48267274

CUSTOMER FILE NUMBER:

END OF CERTIFICATE

THIS ELECTRONICALLY TRANSMITTED LAND TITLES PRODUCT IS INTENDED FOR THE SOLE USE OF THE ORIGINAL PURCHASER, AND NONE OTHER, SUBJECT TO WHAT IS SET OUT IN THE PARAGRAPH BELOW.

THE ABOVE PROVISIONS DO NOT PROHIBIT THE ORIGINAL PURCHASER FROM INCLUDING THIS UNMODIFIED PRODUCT IN ANY REPORT, OPINION, APPRAISAL OR OTHER ADVICE PREPARED BY THE ORIGINAL PURCHASER AS PART OF THE ORIGINAL PURCHASER APPLYING PROFESSIONAL, CONSULTING OR TECHNICAL EXPERTISE FOR THE BENEFIT OF CLIENT(S).

LAND TITLE CERTIFICATE

s

LINC SHORT LEGAL TITLE NUMBER 0020 786 380 899AA;A,B,E 181 100 853

LEGAL DESCRIPTION

PLAN 899AA

BLOCK "A", "B" AND "E"

EXCEPTING THEREOUT:

PLAN BLOCK NUMBER HECTARES ACRES MORE OR LESS

ROAD WIDENING "B" 8010974 0.124 0.31 ROAD WIDENING "E" 8010974 0.071 0.17

EXCEPTING THEREOUT ALL MINES AND MINERALS

AND THE RIGHT TO WORK THE SAME

ATS REFERENCE: 4;19;9;25;E

ESTATE: FEE SIMPLE

MUNICIPALITY: LETHBRIDGE COUNTY

REFERENCE NUMBER: 171 065 962

REGISTERED OWNER(S)

REGISTRATION DATE (DMY) DOCUMENT TYPE VALUE CONSIDERATION

181 100 853 16/05/2018 TRANSFER OF LAND \$380,000 \$380,000

OWNERS

PETER KLASSEN

AND

MARIA KLASSEN

BOTH OF:

BOX 99

PURPLE SPRINGS

ALBERTA TOK 1X0

AS JOINT TENANTS

ENCUMBRANCES, LIENS & INTERESTS

REGISTRATION

PAGE 2

181 100 853

NUMBER DATE (D/M/Y) PARTICULARS

191 171 630 23/08/2019 MORTGAGE

MORTGAGEE - FARM CREDIT CANADA.

2ND FLOOR, 12040-149 ST NW

EDMONTON

ALBERTA

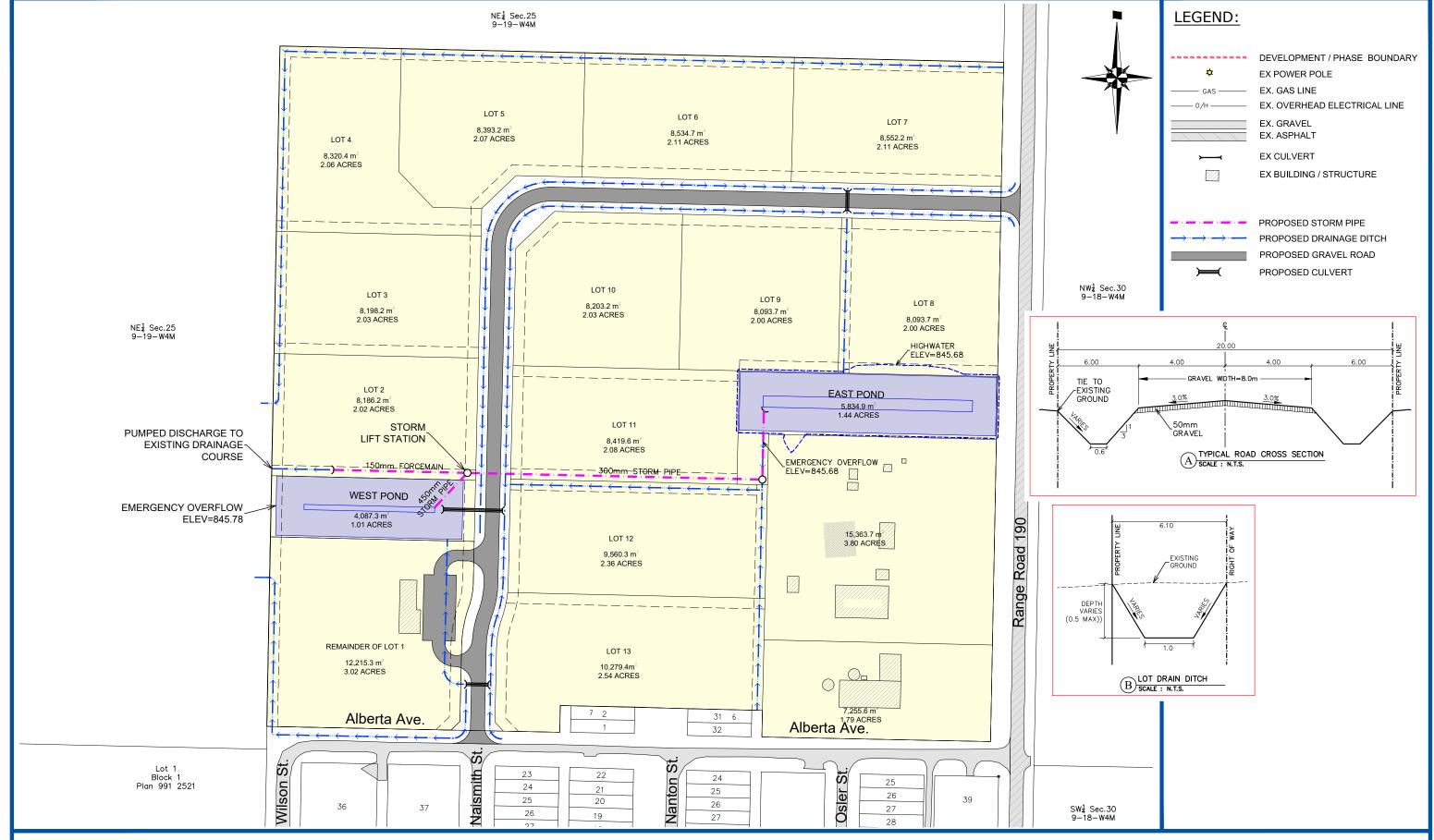
ORIGINAL PRINCIPAL AMOUNT: \$500,000

TOTAL INSTRUMENTS: 001

THE REGISTRAR OF TITLES CERTIFIES THIS TO BE AN ACCURATE REPRODUCTION OF THE CERTIFICATE OF TITLE REPRESENTED HEREIN THIS 6 DAY OF SEPTEMBER, 2023 AT 03:39 P.M.

ORDER NUMBER: 48267274

CUSTOMER FILE NUMBER:


END OF CERTIFICATE

THIS ELECTRONICALLY TRANSMITTED LAND TITLES PRODUCT IS INTENDED FOR THE SOLE USE OF THE ORIGINAL PURCHASER, AND NONE OTHER, SUBJECT TO WHAT IS SET OUT IN THE PARAGRAPH BELOW.

THE ABOVE PROVISIONS DO NOT PROHIBIT THE ORIGINAL PURCHASER FROM INCLUDING THIS UNMODIFIED PRODUCT IN ANY REPORT, OPINION, APPRAISAL OR OTHER ADVICE PREPARED BY THE ORIGINAL PURCHASER AS PART OF THE ORIGINAL PURCHASER APPLYING PROFESSIONAL, CONSULTING OR TECHNICAL EXPERTISE FOR THE BENEFIT OF CLIENT(S).

APPENDIX F

Stormwater Drainage Concept

Chin Town Expansion
STORMWATER MANAGEMENT
May 25, 2024

STORMWATER DRAINAGE CONCEPT Figure 6

GEOMATIC CONSULTANTS
Consulting Engineers, Planners, and Land Surveyors
255-31st Street North Lethbridge, Alberta T1H 3Z4
Ph: (403) 329-0050 E-mail: geomart@mgcl.ca Fax: (403) 329-6594